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EXECUTIVE SUMMARY 

Overview 

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a 
quantitative science.  It serves a wide range of human needs, activities, and concerns.  The 
mathematical sciences provide the language for quantitative science, and this language is growing in 
many directions as computational science in general continues its rapid expansion.  A timely 
opportunity now exists to strengthen and increase the beneficial impacts of chemistry by enhancing the 
interaction between chemistry and the mathematical sciences. 

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional role of 
which involves the creation and dissemination of a penetrating conceptual infrastructure for the 
chemical sciences, particularly at the atomic and molecular levels.  The mathematical sciences have 
been indispensable allies and have provided vital tools for that role.  Theoretical chemistry has also 
sought to devise and to implement quantitative algorithms for organizing massive amounts of data 
from the laboratory, and for predicting the course and extent of chemical phenomena in situations that 
are difficult or even impossible to observe directly; thus, today it is difficult to classify many lines of 
research as either "theoretical" or "computational."  This report tends toward the term 
theoretical/computational—any distinction between the two areas is rather misleading because the 
subject demands both quantitative characterization and conceptual understanding. 

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in 
1928, to solve the Schrödinger equation using hand-cranked calculating machines.  By the 1950s, with 
the appearance of digital computers, serious attempts were being made to obtain highly accurate 
quantitative information about the chemical behavior of molecules via numerical approximations to the 
solution of the Schrödinger equation.  In subsequent years, thanks to leaps in computing power and 
algorithms, methods have evolved from those that were used to study 1- and 2-atom systems in 1928, 
through those that were used to study 2- to 5-atom systems in 1970, to the present programs that 
produce useful quantitative results for molecules with up to 10 to 20 atoms.  Other chemists, whose 
research can be accomplished with cruder models of the atom, have pushed this limit much higher. 
For instance, simpler approximations have long been used in the molecular mechanics approach that 
make possible the modeling of biological molecules with thousands of atoms. 

Recent decades have witnessed a revolutionary expansion in the breadth and capability of 
theoretical and computational chemistry—with a commensurate rise in optimism regarding the ability 
of theoretical/computational chemistry to resolve pressing problems both of a fundamental scientific 
character and of clearly practical interest.  Those outside the field may not realize that 
theoretical/computational chemistry, broadly defined, underpins rational drug design, contributes to 
the selection and synthesis of new compounds, and guides the design of catalysts.  New quantum 
mechanical techniques underlie the understanding of electronic properties of materials and have 
advanced the level of precision at which molecules of at least moderate size can be modeled. 
Furthermore, computational chemistry software is a set of tools used increasingly by chemists of 
many persuasions.  These various abilities and facilities have proved to be very important to U.S. 
industry, and their advancement would generate even further industrial benefits.  Engaging problems 
and deep challenges for mathematical scientists are posed by the needs of theoretical and 
computational chemists, and the products of mathematical research in these areas could have far- 
reaching ramifications. 

The statement of task given to the Committee on Mathematical Challenges from Computational 
Chemistry reads as follows:   "The committee will investigate and report on opportunities for 



EXECUTIVE SUMMARY 

collaborative and synergistic research in the mathematical sciences that can accelerate progress in 
theoretical and computational chemistry and their applications, and make recommendations for 
promoting this research."  It was clear from the outset that the study could not presume to be 
exhaustive.  However, it seemed realistic to strive for representative sampling of the two communities 
involved and to identify instructive examples of past collaborative successes, likely prospects for 
interdisciplinary synergy, and barriers to joint research that could be removed or at least lowered. 

A number of fruitful collaborations between mathematical scientists and theoretical/computational 
chemists have occurred in the past.  Noteworthy examples include the Nobel prize-winning work of 
Hauptman and Karle to advance the science of X-ray crystallography, now a basic tool; quantitative 
structure-activity relationships have led to the development of at least four commercially successful 
products (an antibacterial compound, two herbicides, and one fungicide); and insights into molecular 
structure have been gained from mathematical results in group theory and topology. 

In scanning the research needs of theoretical/computational chemistry, the committee found 
opportunities for synergistic research with almost the entire mathematical sciences community, where 
that term is used in its broadest sense to include core and applied mathematicians, statisticians, 
operations researchers, and theoretical computer scientists. Many of the mathematical lines of 
research that, if reoriented, could contribute to chemistry are already being pursued in other contexts. 
The matrix in Figure ES.l displays a subjective assessment of the depth of potential cross-fertilization 
between major challenges from theoretical and computational chemistry and relevant topics in the 
mathematical sciences.  This matrix is based to some extent on intuition because it is an assessment of 
future research opportunities, not past results.  An "H" in the matrix implies an overlap that appears 
clearly promising, while an "M" suggests that some synergy between the areas is likely.  The absence 
of an H or an M should not be taken to imply that some clever person will not find an application of 
that technique to that problem at some point. 

Conclusions and Recommendations 

As a result of its investigations and collective evaluation of the available information, the 
committee has reached the following conclusions. 

• Several notable "success stories" can be identified, illustrating the value of interdisciplinary 
stimulation and synergistic research collaboration involving cooperation between the mathematical 
sciences and the theoretical/computational chemistry communities. 

• Many opportunities appear to exist for further collaborations between the mathematical and 
chemical sciences that could result in high-quality scholarship and research progress that would 
advance national interests.  The productivity of applied computational chemistry would likely be 
enhanced as a result, which could be potentially significant for industry. 

• Active encouragement of further collaborations is warranted because it would likely result in an 
acceleration of such research progress. 

• Cultural differences between the mathematics and the chemistry communities, involving 
language, training, aesthetics, and research style, have tended to act as barriers to collaboration, even 
in circumstances that might otherwise suggest the benefit of cooperation. 

• Institutional structures and reward systems in the academic community have often placed 
significant difficulties in the way of collaborative research across traditional disciplinary boundaries, 
which can be especially inhibiting to those in early career stages. 
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EXECUTIVE SUMMARY 

• Government funding agencies have for the most part made constructive efforts to identify and 
fund worthy interdisciplinary and collaborative research.  However, this process is still somewhat 
haphazard.  Agencies tend to be organized along traditional disciplinary lines, and the evaluation of 
interdisciplinary proposals relies on personal contacts between program managers and on timely and 
comprehensive responses from what is typically a small pool of qualified reviewers.  The time lapse 
involved in the proposal evaluation process thus has often been anomalously long. 

• To a large extent, both mathematical scientists and theoretical/computational chemists are 
relatively unaware of the most exciting recent advances in each others' fields. Consequently both 
groups tend to be insensitive to the opportunities for interdisciplinary cross-fertilization that could 
produce intellectual novelty and productivity enhancements on both sides. 

• The system of prizes and awards administered by the mathematical sciences and chemistry 
professional societies is currently not geared to recognize and reward interdisciplinary collaborative 
research advances. 

• The national environment—including Congress, funding agencies, and the professional societies 
(see, e.g., Joint Policy Board for Mathematics, 1994)—has become perceptibly more conducive to 
encouraging and supporting interdisciplinary and collaborative research, particularly as it may concern 
industrial innovation and productivity.  Government agencies in particular are currently in a mood to 
actively encourage joint industrial-academic research, even though proprietary rights barriers to free 
collaboration are recognized to exist. 

• The overwhelming volume of specialized technical literature aggravates the communication 
problems between fields and occasionally leads to wasted effort, redundancy, and rediscovery. It 
appears that well-researched and well-written review articles spanning normally disconnected 
specialties in the mathematical sciences and in theoretical/computational chemistry represent a 
disproportionately small fraction of the technical literature, in spite of the fact that they can eliminate 
redundant effort. 

In response to these conclusions and to the insights gained from its study, the committee makes the 
following recommendations: 

Undergraduate Education.  The best way to attract scientists to interdisciplinary work is to get them 
interested as undergraduates.  It is recommended that universities encourage undergraduate 
interdisciplinary research courses, seminars, and summer programs. 

Graduate Education.  Departments in the mathematical and chemical sciences should encourage 
graduate degrees (both M.S. and Ph.D.) that involve dual (mathematics and chemistry) mentoring. 
Dual mentoring activity between chemistry and physics and chemistry and biology has been successful 
in many universities.  The committee recommends that mathematics graduate students consider a 
minor in chemistry instead of a minor in an area of mathematics related to their research specialty. 
Theoretical and computational chemistry graduate students should consider a minor in mathematics or, 
alternatively, take a core of mathematical courses appropriate to their interest (perhaps in the 
framework of a special "interdisciplinary track"). 

Faculty Interaction. Mathematics and chemistry departments should on occasion invite a person 
from the other area to speak in a research seminar or a colloquium. Lists of speakers of potential 
interest to industry should be circulated to local industrial laboratories, and vice versa. 



EXECUTIVE SUMMARY 

Interdisciplinary Research.  The committee recommends that mathematics and chemistry 
departments encourage and value individual and collaborative research that is at the interface of the 
two disciplines.  Such work has the potential for significant intellectual impact on computational 
chemistry, and hence on the future evolution of chemical research and its applications to problems of 
importance in our society. 

Professional Societies.  Professional meetings in mathematics and chemistry—for instance, those of 
the American Mathematical Society (AMS), American Chemical Society, Society for Industrial and 
Applied Mathematics (SIAM), and the Chemical Physics Division of the American Physical 
Society—would benefit from talks very much like the seminar and colloquium talks described in the 
recommendation for faculty interaction above, from shorter presentations in special sessions, and from 
panel discussions.  There are already some promising moves in this direction as reflected, for 
example, by recent AMS sessions on mathematics and molecular biology or SIAM sessions on 
molecular chemistry problems and optimization.  These sessions at national and regional professional 
society meetings could ultimately lead to focused interdisciplinary meetings. 

Prizes and Awards.  The committee recommends that professional societies in the mathematical and 
chemical sciences examine the feasibility of establishing awards and named lectureships for work at 
the mathematics-chemistry interface.  High-level public recognition by peers would be a major step 
toward breaking down interdisciplinary barriers. 

Expository Articles and Books.  Professional journals in mathematics and chemistry could enhance 
their quality, appeal, and influence by publishing expository articles on work at the mathematics- 
chemistry interface.  There is a shortage of books written for someone who is mathematically 
(chemically) sophisticated and desires fairly precise but nonrigorous chemical (mathematical) 
explanations. 

Interdisciplinary and Industrial Postdoctoral and Sabbaticals.  Mathematics and chemistry 
departments should encourage postdoctoral and faculty sabbatical study at the mathematics-chemistry 
interface.  The committee recommends that the chemical software, pharmaceutical, and chemical 
industries expand their use of mathematics postdoctorals and faculty on sabbatical leave, and increase 
their cooperation with and utilization of existing National Science Foundation (NSF) programs such as 
the University-Industry Cooperative Research Program in the Mathematical Sciences; Industry-Based 
Graduate Research Assistantships and Cooperative Fellowships in the Mathematical Sciences; 
Mathematical Sciences University-Industry Postdoctoral Research Fellowships; and Mathematical 
Sciences University-Industry Senior Research Fellowships. Another opportunity in this regard exists 
at the Institute for Mathematics and Its Applications at the University of Minnesota, which has an 
active industrial postdoctoral research program with the aim of broadening the perspectives of recent 
doctoral recipients in the mathematical sciences and preparing them for research careers involving 
industrial interaction. 

Reference 
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1 
INTRODUCTION 

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a 
quantitative science.  It serves a wide range of human needs, activities, and concerns, a theme 
forcefully documented in the comprehensive Pimentel report, Opportunities in Chemistry (National 
Research Council, 1985), which presented the status of chemistry as of 1985.  The mathematical 
sciences provide the language for quantitative science, and this language is growing in many 
directions as computational science in general continues its rapid expansion.  A timely opportunity 
now exists to strengthen and increase the beneficial impacts of chemistry by enhancing the interaction 
between chemistry and the mathematical sciences. 

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional role of 
which involves the creation and dissemination of a penetrating conceptual infrastructure for the 
chemical sciences, particularly at the atomic and molecular levels.  The mathematical sciences have 
been indispensable allies and have provided vital tools for that role.  Theoretical chemistry has also 
sought to devise and to implement quantitative algorithms for organizing massive amounts of data 
from the laboratory, and for predicting the course and extent of chemical phenomena in situations that 
are difficult or even impossible to observe directly; thus, today it is difficult to classify many lines of 
research as either "theoretical" or "computational."  This report tends toward the term theoretical/ 
computational—any distinction between the two areas is rather misleading because the subject 
demands both quantitative characterization and conceptual understanding. 

Even before the advent of computers as a major component in physical science research, the 
theoretical tradition in chemistry had accumulated a substantial membership: in its 1966 report entitled 
Theoretical Chemistry, A Current Review, the Westheimer committee estimated that in 1964, 
approximately 200 theoretical chemists with faculty appointments in graduate-degree-granting 
institutions could be identified in the United States (National Research Council, 1966, p. 3). 

The subsequent three decades have witnessed a revolutionary expansion in the breadth and 
capability of theoretical and computational chemistry, as well as in its population.  These changes, of 
course, have been driven by the rapid evolution of computers and by their widespread availability in 
the scientific community.  The resulting impact has been enormous and has expanded the range of 
research activity in theoretical/computational chemistry to encompass the entire spectrum from purely 
analytical theory, through simulational study of mathematically well-defined models, to the adroit 
development of powerful and general computational algorithms.  Indeed, for the purposes of this 
document, the committee takes the viewpoint that theoretical/computational chemistry constitutes a 
seamless continuum of research activities that deserves to be assessed as a whole. 

If the mailing lists of theoretical chemistry conferences can be taken as evidence, the current 
number of theoretical/computational chemists working in the United States has grown to 
approximately 1000 (John C. Tully, Chairman of 1993 International Conference on Theoretical 
Chemistry, personal communication).  To some extent, this expansion in population has occurred in 
the academic community.  But more significantly, it represents a major growth in the industrial and 
government sectors, and reflects an increasing realization that theoretical and computational chemistry 
contributes to the national economic and security welfare.  The last three decades have exhibited a 
general rise in expectations and optimism surrounding the ability of theoretical/computational 
chemistry to resolve pressing problems both of fundamental scientific character and of clear practical 
application.  The historical record of these expectations can be seen in reports, for example, of 
workshops and studies held during the early days of the "supercomputer era" (National' Research 



Council, 1974, 1975, 1976; Schatz, 1984; Berne, 1985).  Not surprisingly, physics and engineering 
manifested similar experiences at the same time (National Science Foundation (NSF) Advisory 
Committee for Physics, 1981; Lax, 1982; NSF Working Group on Computers for Research, 1983; 
National Research Council, 1984). 

The pervasive significance and widespread applicability of theoretical and computational chemistry 
may not always be immediately obvious to those not frequently concerned with this activity. 
Nevertheless, it is central to rational drug design, it contributes to the selection and synthesis of new 
materials, and it guides the design of catalysts.   New quantum mechanical techniques underlie the 
understanding of electronic properties of materials and have advanced the level of precision at which 
molecules of at least moderate size can be modeled.  Furthermore, computational chemistry software 
is a set of tools used increasingly by chemists of many persuasions.  These various abilities and 
facilities have proved to be very important to American industry, and their advancement would 
generate even further industrial benefits.  Engaging problems and deep challenges for mathematical 
scientists are posed by the needs of theoretical and computational chemists, and the products of 
mathematical research in these areas can have far-reaching ramifications. 

The marked growth of theoretical/computational chemistry inevitably has involved a substantial 
national investment of skilled human resources and of expensive computing resources (both hardware 
and software).  Both of these types of commodities are relatively scarce and are subject to competition 
between alternative scientific and technological disciplines.  Table 1.1 shows, for instance, that 
software for theoretical and computational chemistry claims much of the cpu usage on the Cray Y-MP 
at the San Diego Supercomputer Center.  Data from other NSF supercomputer centers reveals similar 
patterns.  What Table 1.1 does not show is the heavy dependence of these chemistry codes on 
mathematical software such as UNPACK and EISPACK.   The productivity of these computational 
resources, broadly construed, must be an issue for continual analysis and informed action by 
policymakers.  In particular, the strong mathematical flavor of theoretical/computational chemistry 
leads to a natural examination of the efficacy of links between the mathematical and the chemical 
sciences, and to the past, present, and future roles of interdisciplinary research at the interface 
between these subjects. These issues constitute basic concerns for the present study. 

The 14 chemists, biochemists, and mathematical scientists from industry, government, and 
academia who attended a 1991 workshop at the National Research Council (NRC) decided that the 
interface of the mathematical sciences and theoretical/computational chemistry was an area that 
deserved encouragement, and that a fuller study of the issues was warranted.  Subsequently, the 
Board on Mathematical Sciences and the Board on Chemical Sciences and Technology of the NRC 
jointly proposed a study to identify research opportunities for the mathematical sciences relevant to 
computational chemistry, with the goal of engaging the talent of more mathematical scientists in the 
problems of computational chemistry, which should produce advances of benefit to both the 
mathematical and the chemical sciences.  The phrase "computational chemistry" was to be interpreted 
to include those areas related to molecular structure and its determination, broadly defined; it was felt 
that there was less need to promote greater participation by mathematical scientists in the areas of 
computational chemistry on the macroscopic scale—including such topics as reaction/diffusion 
modeling and most of chemical engineering.  On securing approval and funding for this study, a 
Committee on Mathematical Challenges from Computational Chemistry was selected, with its first 
meeting held in Washington, D.C. on March 29-30, 1994.  Two subsequent meetings took place: 
June 9-10, 1994, in Washington, D.C, and September 9-11, 1994, in Woods Hole, Massachusetts. 

The statement of task given to the Committee on Mathematical Challenges from Computational 
Chemistry reads as follows:   "The committee will investigate and report on opportunities for 
collaborative and synergistic research in the mathematical sciences that can accelerate progress in 
theoretical and computational chemistry and their applications, and make recommendations for 
promoting this research."  It was clear from the outset that the study could not presume to be 
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TABLE 1.1  Top ten applications in terms of percentage of CRAY C90 usage at the San Diego 
Supercomputer Center for the period December 1, 1993, to August 17, 1994 

Time Used (%) Application Description 

7.1 ESP Molecular dynamics 

6.7 Gaussian Quantum chemistry 

5.4 AMBER Molecular dynamics 

2.6 TREESPH Galactic dynamics 

2.1 GAMESS Quantum chemistry 

2.0 ARGOS Molecular dynamics 

1.5 CGCM Coupled ocean-atmosphere global climate 
model 

1.5 DMOL Quantum chemistry 

1.3 COULMETL Materials science 

1.2 DIEL Materials science 

SOURCE:  Wayne Pfeiffer, San Diego Supercomputer Center, personal communication. 

exhaustive.   However, it seemed realistic to strive for representative sampling of the two communities 
involved and to identify instructive examples of past collaborative successes, likely prospects for 
interdisciplinary synergy, and barriers to joint research that could be removed or at least lowered. 

In order to supplement its own breadth of expertise, as well as to reach out to the mathematical 
sciences community, the committee invited guests to its first two meetings to learn from their 
perspectives.  At its first meeting, the committee engaged in a lengthy discussion with Richard 
Herman, chair of the Joint Policy Board for Mathematics, learning about the range of attitudes in that 
community toward interdisciplinary research and about efforts to adjust the community's priorities on 
many fronts (Joint Policy Board for Mathematics, 1994).  At its second meeting, the committee 
invited an optimization researcher (Margaret Wright, of AT&T Bell Laboratories, incoming president 
of the Society for Industrial and Applied Mathematics), a statistician (Douglas Simpson of the 
University of Illinois at Urbana-Champaign), and a researcher in computational fluid dynamics (David 
Keyes from the National Aeronautics and Space Administration's Langley Research Center).  These 
guests were invaluable, both for their insights about interdisciplinary research opportunities and for 
their perspectives on how the committee might influence the mathematical sciences community. 

In scanning the research needs of theoretical/computational chemistry, the committee found 
opportunities for synergistic research with almost the entire mathematical sciences community, where 
that term is used in its broadest sense to include core and applied mathematicians, statisticians, 
operations researchers, and theoretical computer scientists in academe, government laboratories, and 
industry.  The common denominator shared by mathematical scientists who have contributed or could 
contribute to progress in chemistry is not a particular background; rather, it is a willingness to truly 
collaborate. 

Readers may wish to note that two other recently issued reports have a strong bearing on matters 



considered herein.  The NRC has completed a parallel study entitled Mathematical Research in 
Materials Science, which examines many of the same kinds of prospects, barriers, and cures discussed 
below, although some key distinctions become clear (National Research Council, 1994).  The present 
report gives a somewhat heavier emphasis to biological applications of computational chemistry to 
avoid excessive overlap with that earlier report.  The second is Recognition and Rewards in the 
Mathematical Sciences by a committee of the Joint Policy Board for Mathematics (1994), the 
recommendations of which are consistent with those contained herein. 

The committee believes that this report has relevance and potentially valuable suggestions for a 
wide range of readers.  Several important target audiences and the kinds of benefits they might expect 
to derive are the following: 

1. Graduate departments in the mathematical and chemical sciences could glean suggestions for 
promising research directions for graduate students and young scientists, ideas about how to foster 
interdisciplinary collaborations, and insight into new types of job opportunities that may appear in the 
future. 

2. Federal and private agencies that fund research in the mathematical and chemical 
sciences—including federal policymakers involved in the high-performance computing and 
communications, materials science, and biotechnology initiatives—can find suggested topics that 
provide links between the fields, high-priority research topics at the interface, and suggestions for 
fostering collaborations. 

3. Selected industrial and government research and development laboratories can learn of ways in 
which research from the mathematical sciences could be used to improve the productivity of 
theoretical and computational chemists. 

4. Developers of software and hardware for computational chemistry can gain more insight into 
the role that the mathematical sciences could play. 

5. Selected individual researchers can find inspiration and background for promising research 
directions (especially for graduate students and young researchers), ways in which their existing lines 
of research may have parallels or applications in another field, and suggestions for initiating 
collaborations. 

Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, 
while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical 
scientists and computational/theoretical chemists.  In Chapter 4 the committee has assembled a 
representative, but not exhaustive, survey of research opportunities.  Most of these are descriptions of 
important open problems in computational/theoretical chemistry that could gain much from the efforts 
of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. 
Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if 
collaborative work is to be encouraged between the mathematical and the chemical communities. 
Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could 
promote accelerated progress at this interface.  Recognizing that bothersome language issues can 
inhibit prospects for collaborative research at the interface between distinctive disciplines, the 
committee has attempted throughout to maintain an accessible style, in part by using illustrative 
boxes, and has included at the end of the report a glossary of technical terms that may be familiar to 
only a subset of the target audiences listed above. 

References 
Berne, Bruce J., 1985, organizer, Supercomputers in the Simulation and Modeling of Chemical Systems, 
National Science Foundation workshop, Arden House, Harriman, N.Y., April 26-28. 

10 



Joint Policy Board for Mathematics, 1994, Recognition and Rewards in the Mathematical Sciences, American 
Mathematical Society, Providence, R.I. 

Lax, Peter D., 1982, chairman, Large Scale Computing in Science and Engineering, sponsored by the 
Department of Defense and the National Science Foundation in cooperation with the Department of Energy and 
the National Aeronautics and Space Administration. 

National Research Council, 1966, Theoretical Chemistry, A Current Review, National Academy Press, 
Washington, D.C. 

National Research Council, 1974, A Study of a National Center for Computation in Chemistry, National 
Academy Press, Washington, D.C. 

National Research Council, 1975, A Proposed National Resource for Computation in Chemistry: A User 
Oriented Facility, National Academy Press, Washington, D.C. 

National Research Council, 1976,  Needs and Opportunities for the National Research for Computation in 
Chemistry (NRCC), National Academy Press, Washington, D.C. 

National Research Council, 1984, Computational Modeling and Mathematics Applied to the Physical Sciences, 
National Academy Press, Washington, D.C. 

National Research Council, 1985, Opportunities in Chemistry, National Academy Press, Washington, D.C. 

National Research Council, 1994, Mathematical Research in Materials Science, National Academy Press, 
Washington, D.C. 

National Science Foundation Advisory Committee for Physics, 1981,  Prospectus for Computational Physics, 
National Science Foundation, Arlington, Va. 

National Science Foundation Working Group on Computers for Research (Kent K. Curtis, Chairman), 1983, A 
National Computing Environment for Academic Research, National Science Foundation, Arlington, Va. 

Schatz, George C.  (organizer), 1984, Future Directions for Supercomputer Use in Chemistry, National Science 
Foundation workshop, Evanston, 111., October 15-17. 

11 



2 
THE EMERGENCE OF COMPUTATIONAL CHEMISTRY 

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in 
1928, to solve the Schrödinger equation (see Box 2.1) using hand-cranked calculating machines. 
These calculations verified that solutions to the Schrödinger equation quantitatively reproduced 
experimentally observed features of simple systems such as the helium atom and the hydrogen 
molecule.  Approximate solutions for larger systems and exact solutions to simple model problems 
allowed chemists and physicists to make qualitative explanations of spectra, structure, and reactivity 
of all types of matter. 

During the Second World War, electronic computers were invented, and in the decade after the 
war these became available for general use by scientists.  At the same time, physicists generally 
became more interested in nuclear structure and lost interest in the details of molecular structure and 
spectra.  Hence, beginning in the mid-1950s, a new discipline was developed, primarily by chemists, 
in which serious attempts were made to obtain quantitative information about the behavior of 
molecules via numerical approximations to the solution of the Schrödinger equation, obtained by using 
a digital computer.  The present success of this field has come largely from the enormous increase in 
speed, and decrease in cost, of computers, with significant improvements also attributable to many 
developments in algorithms and methodology.  During the 1960s, three major developments in 
algorithms and methodology made quantum chemistry a useful tool: computationally feasible, accurate 
basis sets were developed; reasonably accurate approximate solutions to the electron correlation 
problem were demonstrated; and formulas for analytic derivatives of the energy with respect to 
nuclear position were derived.  These developments were incorporated into several software packages 
that were made readily available to most chemists in the early 1970s, leading to an explosion in the 
literature of applications of computations to chemical problems.  These programs are used to predict 
and explain the structure and reactivity of molecules and to complement the information obtained 
from many types of spectral measurements.   Refinement of the program packages has, of course, 
continued, with emphasis on increased accuracy, increased size of molecules that can be studied, and 
adaptation to new computer hardware.  The present methods have evolved from those that were used 
to study 1- and 2-atom systems in 1928 through those that were used to study 2- to 5-atom systems in 
1970, to the present programs that produce useful quantitative results for molecules with up to 10 to 
20 atoms.  Much of the current research in new methods is aimed at developing methods that are 
feasible for even larger molecules. 

A classic example of the power of the theoretical/computational approach is the work in the 1960s 
by W. Kolos and L. Wolniewicz.   Explicit r12 calculations had been introduced for the hydrogen 
molecule in 1933 by James and Coolidge, and Kolos and Roothaan, working together in Mulliken's 
lab, improved these calculations in 1960.  Subsequently, Kolos teamed up with Wolniewicz to author 
a sequence of papers of increasing accuracy.  Their results diverged from the accepted 
(experimentally derived) dissociation energy of H2.  When all known corrections were included, 
Kolos and Wolniewicz's best estimate of the discrepancy (in 1968) was 3.8 cm"1  Thus prodded, 
experimentalists reexamined the issue and in 1970 a new spectrum of better resolution and a new 
assignment of the vibrational quantum numbers of the upper electronic state were published.  Both of 
these results were within experimental uncertainty of the best theoretical result. 

While the emphasis of one aspect of computational chemistry has been on solving the many-body 
electronic structure problem, another group of chemists has focused on using the resulting potential 
energy surface for studying nuclear motion.  This has led to a collection of programs for doing 
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BOX 2.1 The Schrödinger Wave Equation 

The time evolution of a (nonrelativistic) quantum mechanical system is prescribed by the Schrödinger 
wave equation.  For a particle with mass m and position r that is moving under the influence of a potential 
V(r), this equation reads: 

-(h/i) d\P(r,t) I dt = H Mr,f) , 

where H is the linear Hermitian Hamiltonian operator: 

H s -02/2m) V2 + V(r) . 

Here h is Planck's constant divided by 2ir and has the very small value 1.05 X 1(T27 erg-second 
characteristic of the submicroscopic quantum regime.  The wavefunction \[/ generally is complex; its 
amplitude squared j \j/\2 provides the probability distribution for the position of the particle at time /.  The 
linearity of the Schrödinger wave equation and the Hermiticity of H guarantees conservation of 
probability. 

Time-independent solutions to the wave equation that have physical significance fall into two categories 
and require two distinct boundary conditions.  The first ("bound states") are square-integrable 
eigenfunctions of H; they are bounded, vanish at infinity, and provide a discrete spectrum of real energy 
eigenvalues for H.  The second ("scattering states") are a continuum of solutions that lie in energy above 
the infinite-r limit of V(r) (if it exists), and the wavefunction remains nonzero (and oscillatory as a plane 
wave or sinusoidal function) in this asymptotic limit. 

Quantum mechanical phenomena implied by the Schrödinger wave equation have a strongly 
counterintuitive flavor.   The discreteness of bound-state energies contrasts starkly with the continuous 
energies available to a dynamical system in classical mechanics.  The corresponding discreteness of the 
energy spectrum of transitions between pairs of quantum bound states has spawned the colloquially 
overused and misused phrase "quantum leap."  In addition, the wavefunction can be nonvanishing in 
regions where V exceeds the total energy, leading to the well-known, but often mystifying, tunneling 
phenomenon; this permits particles to pass through potential energy barriers that in classical mechanics 
would provide absolute blockage.   Less well known, but equally mystifying, is the reverse phenomenon 
originally pointed out by von Neumann and Wigner (1929): some potential functions V(r) have the 
capacity to trap particles in square-integrable eigenstates at energies above the absolute maximum of V, 
again in contradiction to classical mechanical behavior. 

The Schrödinger wave equation adapts naturally to the description of many mutually interacting 
particles.  The case most prominently considered in chemistry is that of two or more electrons, where V 
includes Coulombic interactions for electron-electron repulsions and electron-nucleus attractions. 
However, it is important to account for the fact that electrons in particular are endowed with intrinsic 
angular momentum, denoted by "spin," that is quantized to display only two allowed values, "up" and 
"down."  In the strictly nonrelativistic regime (chemically, that which involves only atoms with low 
atomic numbers), these electron spins are invariants of motion and can be formally eliminated from the 
mathematical problem, provided that the remaining spatial wavefunction for the electrons satisfies 
appropriate symmetry conditions.   In the case of two-electron systems (examples are the helium atom and 
the hydrogen molecule), the spatial wavefunction must either be symmetric under interchange of electron 
positions (if one "up" spin and one "down" spin are present) or antisymmetric (if both spins are "up" or 
both are "down").  Analogous, but more complicated, interchange conditions are applicable to the spatial 
wavefunction when more electrons are present. 

Reference 
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classical, semiclassical, and quantum calculations.  Since 1980, use of these programs has become a 
routine tool for modeling molecules and gas-phase chemical reactions.  These computations yield 
collision cross sections, both differential and integral, for elastic, inelastic, and reactive events. 
These approaches require, as with transition state theory, potential energy surface(s) obtained using 
quantum chemical methods of solution of the electronic Schrödinger equation.  The Schrödinger 
equation for nuclear motion is solved subject to a scattering boundary condition, which takes the form 
of coupled differential, integro-differential, algebraic, or integral equation systems.  The methods 
used to solve these coupled systems of equations are drawn from the applied mathematics literature as 
well as from algorithm improvements developed by computational chemists. 

Meanwhile, simpler approximations have long been used by chemists to estimate the energy of 
molecules near their equilibrium geometry.  In the molecular mechanics approach (see Box 2.2) the 
total energy of a chemical system is approximated by a sum of simple terms involving distances 
between atoms, bond angles, and dihedral angles.  These terms involve estimated parameters that are 
assumed to have the same values as similar parameters obtained by data fitting for simpler molecules. 
(Chemists have long known that many structural and energetic features of molecules are nearly 
transferable between similar subfragments of molecules.) This representation of the energy has made 
possible the modeling of biological systems and rational drug design.  It is also at the heart of the 
computational engine of many programs that produce three-dimensional computer graphics images of 
molecules.  Molecular mechanics has become so prevalent that many chemists now equate it with 
computational chemistry.  This approach has allowed the modeling of molecules with thousands of 

BOX 2.2 Molecular Mechanics/Molecular Dynamics 

Molecular mechanics and molecular dynamics refer to methods for computing certain molecular 
properties, particularly molecular structure and relative energy.  They both typically use fairly simple 
potential energy functions that are derived from classical mechanics (e.g., a parabolic function to calculate 
the energy required to stretch or to compress a chemical bond).  In addition, they both rely on parameters 
that arc derived either from experiment (e.g., infrared spectroscopy and X-ray crystallography) or from 
quantum mechanics-based calculations (e.g., high-level ab initio molecular orbital calculations).  A 
collection of potential energy functions and the associated parameters that are employed for molecular 
mechanics/molecular dynamics calculations is frequently referred to as a "force field"; thus, calculations 
that utilize the molecular mechanics or molecular dynamics approach are often referred to as empirical 
force field calculations. 

The molecular mechanics method is generally employed to compute the relative energies of different 
geometries (conformations) of the same molecule that arise from rotations about chemical bonds as well as 
relative energies of intermolecular complexes.  Often, energy minima are sought; thus, the molecular 
mechanics method is frequently coupled with optimization procedures.  On the other hand, in the 
molecular dynamics method, Newton's equations of motion are solved by using the gradient of the above- 
mentioned potential energy function (force field) to compute the dynamic trajectory of a molecule or of an 
ensemble of molecules.  Both the molecular mechanics and the molecular dynamics methods have found 
widespread use in the modeling of biomolecular systems, for which quantum mechanical calculations are 
simply not practical due to the overwhelming number of particles involved.  Nonetheless, these methods 
are quite accurate for the estimation of certain molecular properties (i.e., those for which classical 
mechanics is appropriate), and they have been successfully employed to compute conformational energies 
(as described above), to estimate the binding affinity of small molecules bound to a macromolecular 
receptor, and as an adjunct for the refinement of structures derived from protein X-ray crystallography 
and protein nuclear magnetic resonance spectroscopy. 
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BOX 2.3  Chemist, Mathematician, or Physicist? 

Douglas R. Hartree was an example of a truly interdisciplinary scientist.  He invented the self- 
consistent field approach in 1927 to approximate the solution of the Schrödingcr equation and did a 
number of calculations on atomic structure.   His undergraduate studies had been interrupted by the First 
World War, during which he did ballistics computations.   After completing his Ph.D., he held three 
chairs, first in Applied Mathematics at Manchester, then in Theoretical Physics at Manchester, then in 
Mathematical Physics at Cambridge.   In 1934, he built the first differential analyzer in England.   From 
1939 until 1945, he used this in support of the war effort.  After the war he was a consultant on the 
ENIAC computer and developed some of the first computer-based methods for solving partial differential 
equations.  He taught numerical analysis at Cambridge University and wrote an insightful text on the 
subject, first published in 1952. 

atoms.   The practical disadvantage is that only structural types previously encountered in smaller 
molecules can be parameterized for larger molecules, so many parameters remain unknown.   The 
conceptual disadvantage is that this is no longer a first principles theory and the connection to the 
Schrödinger equation is unclear.   Hence, there can be no rigorous estimate of the potential errors in 
this approach and its success relies on chemical intuition for finding suitable molecules from which to 
develop the "transferable" parameters. 

Another important thread in theoretical chemistry has been the study of many-particle systems such 
as liquids, solid materials, and biological macromolecules.   The major framework for this study has 
been statistical mechanics—a subject with its formal roots in the nineteenth century.  In the 1930s, the 
study by physical chemists of structure and thermodynamics accelerated with the advent of simple 
ideas about intramolecular and intermolecular forces.  Equilibrium statistical mechanics has offered 
many questions of principle—for example, the question of the nature, and even definition, of phase 
transitions.   These questions fostered a long-standing cross-fertilization between workers in both the 
mathematical and chemical communities (see Box 2.3).  Similarly the study of phenomena away from 
equilibrium (e.g., the transport phenomena of hydrodynamics and the chemical rates) attracted the 
fundamental thinkers in statistical mechanics starting in the 1950s.  Recently, corresponding deep 
questions of principle about disordered systems such as glasses have attracted workers from both 
communities. 

Although a large part of statistical mechanics can be studied without computers, machine 
calculations for many-body simulation made an early impact in the 1950s and have grown to be the 
dominant mode of investigation.  Monte Carlo methods, invented at the weapons laboratories by 
workers such as Fermi, Ulam, von Neumann, Metropolis, and Teller, were used immediately to 
address the many-body problems relevant to the thermodynamics of liquids.  Such Monte Carlo 
approaches were adapted quickly to the study of polymers as well.  The numerical solution of 
Newton's laws for many-particle models, so-called molecular dynamics (see Box 2.3), was also first 
carried out by theoretical chemists in the late 1950s and early 1960s.  The application of molecular 
dynamics and Monte Carlo methods to proteins and other biomolecules in the 1970s has led to their 
widespread use throughout the theoretical and experimental chemical communities.   Since significant 
advances in the efficiency of the algorithms used in molecular dynamics and Monte Carlo simulation 
are needed to address the forefront questions such as protein folding, a renewed contact of theoretical 
chemists with the numerical mathematics community has recently involved collaborative efforts of 
mathematicians, chemists, and physicists. 

The advent of molecular quantum mechanics was followed by a very successful theory of chemical 
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reaction rates that modeled a reactive event as passage over a reaction barrier on a multidimensional 
potential energy surface representing the energy as a function of the internal coordinates of the 
reacting system.   In its simplest form, the model corresponds to the system moving from reactants to 
transition states (the critical configuration), from which the system moves to reaction products.  This 
conceptually simple model has remained the predominant approach for estimating rates of chemical 
reactions.  Because of the multidimensionality of the reactive system, however, it is computationally 
difficult to implement rigorously.  Over the years, efforts have focused on improving methods to 
estimate reaction barriers and properties of the reactants, and these have required better solutions of 
the electronic and nuclear transition states. 

The roots of much of the mathematics now finding application to computational chemistry extend 
back at least to the eighteenth or nineteenth century, although, as illustrated in Chapters 3 and 4 of 
this report, the most up-to-date developments in the mathematical sciences can also be very natural 
tools.  Group theory traces its origin to fundamental studies of geometries, but from it has come the 
theory of groups of motions, continuous groups, Lie groups, and Lie theory.   The need to understand 
functions on the sphere and other surfaces led to the representation theory of groups and to various 
kinds of function theory.  These theories grew up with the creation of quantum mechanics and fed, 
and were fed by, quantum mechanics.  Much of operator theory and integral equations came from 
physics and engineering, as did the general theory of harmonic analysis.  Numerical linear algebra 
and numerical analysis developed largely as tools for fluid mechanics and military applications, but 
their usefulness is vastly more widespread than that. 

After World War II the mathematics community entered a period of intense development of its 
core, accelerating the growth of fields such as topology, number theory, algebraic geometry, and 
graph theory.  Advances were largely motivated by questions generated by the internal structure of 
mathematics and not by contact with the outside world.  In recent years, however, attention has once 
again turned outward, and the products of this intense period are now being applied widely in novel 
ways.  The advent of modern computing capacity has enabled mathematicians to generate 
computational algorithms that yield answers—when combined with proper modeling techniques—to 
important practical problems.  Success has been achieved in signal processing, sound and image 
compression, flow problems, and electromagnetic theory.  Historically, mathematical scientists have 
worked more closely with engineers and physicists than with chemists, but recently many fields of 
mathematics such as numerical linear algebra, geometric topology, distance geometry, and symbolic 
computation have begun to play roles in chemical studies. 

Before proceeding to accounts of past and potential contributions that mathematics can make to 
progress in chemistry, it should be emphasized that the challenge of interdisciplinary research is not 
one of scientific content alone, but also one of scientific process.  Neither the chemist nor the 
mathematician is generally the optimal person to construct a mathematical model, as the model by its 
very nature lies at the interface between theory and observation.  To build the model, an iterative 
process of refinement is required, in which mathematical considerations motivate approximations that 
need to be checked against reality, and in which key chemical insights necessarily force levels of 
mathematical complexity.  It is exactly this need for iterative model construction that may motivate 
the collaboration of mathematicians and chemists, against the self-referential and conservative 
tendencies of each discipline.  Focusing on this process of iterative model construction can help 
clarify the roles of the collaborators in interdisciplinary research, and by extension illustrate the goals 
for their respective disciplines as attempts are made to lower the hurdles to such collaborations.  The 
model is both the interface between the disciplinary boundaries and the lingua franca between the 
cultures. 
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3 
EXAMPLES OF CONSTRUCTIVE CROSS-FERTILIZATION BETWEEN THE 

MATHEMATICAL SCIENCES AND CHEMISTRY 

Use of Statistics to Predict the Biological Potency of Molecules Later 
Marketed as New Drugs and Agricultural Chemicals 

Because the search for new drugs or pesticides typically involves the investigation of thousands of 
compounds, many research investigators have sought computer methods that would correctly forecast 
the biological properties of compounds before their synthesis.  Box 3.1 describes how searches for 
new drugs or pesticides are done.  There are four well-documented cases of the use of computer 
methods, particularly quantitative structure-activity relationship (QSAR) methods, as an integral part 
of the design of compounds that are now marketed as drugs or agrochemicals.  Not only are these 
compounds commercial successes for the companies that developed them, but they benefit mankind by 
aiding in the treatment of disease or increasing the food supply.  This viewpoint has been so 
successful that recently a company, Arris, was founded to incorporate the direct involvement of 
mathematicians in the development of proprietary drug design software. 

The Hansch-Fujita QSAR method (Hansch and Fujita, 1964) was developed in the early 1960s and 
has become widely used by medicinal and agricultural chemists.  In this method, one first describes 
each molecule in terms of its physical properties and then uses statistical methods to uncover the 
relationship between some combination of these physical properties and biological potency. 

Usually in QSAR methods the relationships are examined with multiple linear or nonlinear 
regression, classical multivariate statistical techniques.  However, discriminant analysis, principal 
components regression, factor analysis, and neural networks have been applied to these problems as 
well.  More recently, the partial least squares (PLS) method (Wold et al., 1983) has found wide use 
in both QSAR and analytical chemistry.  Although PLS was originally developed by a statistician for 
use in econometrics, its widespread utility in chemistry has prompted additional statistical research to 
improve its speed and its ability to forecast the properties of new compounds, and to provide 
mechanisms to include nonlinear relationships in the equations. 

Recently, Boyd described four cases in which QSAR and other computer analysis led to a 
commercial product (Boyd, 1990).  He documented each case carefully by correspondence with the 
original inventors.  The first is the antibacterial compound norfloxacin marketed for human therapy in 
Japan, the United States, and other countries.  It is up to 500 times more potent than previously 
marketed compounds of this class.  Additionally, it is effective against Pseudomonas, a difficult 
organism to control.  Norfloxacin and its subsequent derivatives achieve a clinical efficacy of 
approximately 90%.  Norfloxacin was designed at the Kyorin Pharmaceutical Company in Japan from 
a traditional QSAR analysis that used regression analysis of about 70 compounds. 

The second and third QSAR-designed molecules to reach the market are both herbicides. 
Metamitron, discovered by Bayer AG in Germany, was based on a QSAR that involved the multiple 
linear regression analysis of 22 compounds.  In 1990 it was the best seller in Europe for the 
protection of sugar beet crops.  The other herbicide, bromobutide, has been marketed in Japan since 
1987.  It was developed at Sumitomo Chemical Company in Japan based on QSAR analysis of 74 
compounds. 

The final example concerns the fungicide myclobutanil, which entered the European market in 
1986 for the treatment of grape diseases and was introduced to the U.S. market in 1989.  It was 
developed by Rohm and Haas in the United States.  The design of myclobutanil involved traditional 
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BOX 3.1 Rational Drug Design 

The traditional discovery of new drugs is an empirical process that starts with a compound of marginal 
biological activity.  This "lead" compound either is discovered serendipitously by the random screening of 
a large number of compounds (often obtained from libraries of previously synthesized molecules) or is 
obtained by preparing analogues of a natural ligand (i.e., a small molecule such as a hormone that binds to 
a biomacromolecule such as an enzyme).  Chemical intuition and experience as well as ease of synthesis 
serve to suggest other closely related molecules (analogues) for synthesis.   This process is iterative and 
continues until a compound is discovered that not only possesses the requisite activity toward the target but 
also possesses minimal activity toward other biomacromolecules (i.e., it is selective and nontoxic).  The 
compound must also have a desirable duration of action in a suitable dosage form, its synthesis must not 
be too costly so that its use will be cost-effective, it must be patentable, etc.  This process can take many 
years, can cost millions of dollars, and often does not result in a marketed product.   Any method that 
would make this process more efficient is clearly useful.  Thus, chemists in the pharmaceutical industry 
have sought a more rational procedure for the discovery and design of new drugs. 

If the three-dimensional structure of the target biomacromolecule has been determined (e.g., by using 
X-ray diffraction or nuclear magnetic resonance spectroscopic techniques), a technique that has been 
termed structure-based drug design can be used for the design of new molecules with the potential to 
become useful therapeutic agents.  If the three-dimensional structure of the target is unavailable, then a 
hypothetical model is formulated with the goal of describing the molecular features required if a particular 
compound is to elicit a desired biological response.  This model, of course, can be validated only after a 
number of compounds have been synthesized and tested for their biological activity so that a statistical 
relationship between biological activity and physical molecular properties (i.e., a quantitative structure- 
activity relationship, or QSAR) can be established.  Nonetheless, such a model is highly useful for 
focusing the synthetic effort on compounds that have the greatest chance of exhibiting increased biological 
activity.  Rational drug design is heavily dependent on computational chemistry techniques, and advances 
in rational drug design are tightly coupled to advances in new algorithms for computer-assisted molecular 
modeling. 

To design a new ligand for a biomacromolecule of interest using the three-dimensional structure of the 
target biomacromolecule as a guide, the structure of the target must have been found with sufficient 
resolution to be of utility.  One must then attempt to predict the bound geometry and intermolecular 
interactions responsible for the high binding affinity of novel potential ligands (or molecular fragments) 
associated with the biomacromolecular target.  Computer algorithms have been developed over the past 
few years that aid in the identification of potential docking modes.  These algorithms have also been used 
to identify, from three-dimensional databases, molecules that can potentially dock (and hence bind) to a 
biomacromolecular target.  The prediction of biological activity of a potential ligand prior to synthesis 
represents another essential activity for the structure-based design of new drugs.  This endeavor represents 
an enormous challenge for structure-based drug design, but some progress has been made using statistical 
mechanics-based free energy perturbation techniques that involve computer simulations employing 
molecular dynamics or Monte Carlo methods or by using QSAR methods that rely on the three- 
dimensional properties of the bound ligand. 

In spite of the obstacles associated with employing an analytical approach to the design of new drugs, 
rational drug design has, nonetheless, been of enormous utility to the pharmaceutical industry.  The QSAR 
method has played a role in the development of a number of drugs currently undergoing clinical trials and 
there are marketed products for which QSAR has been instrumental.  A number of potential drugs that 
have been discovered using structure-based drug design techniques are currently under preclinical or 
clinical investigation for the treatment of diseases that include cancer, AIDS, rheumatoid arthritis, 
psoriasis, and glaucoma. 
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QSAR on 67 compounds and three-dimensional molecular modeling to explain the QSAR and to 
provide a model of how the compounds bind to their biological target. 

Although these successes are real accomplishments, researchers in medicinal and agricultural 
chemistry would like to extend the methods to more cases; such extensions create an opportunity for 
creative mathematical insights.  The thrust of new research in QSAR has been to calculate the 
descriptors of the molecules from their three-dimensional arrangements of atoms and electrons in 
space (Kubinyi, 1993).  The problem is that one of the popular methods, the comparative molecular 
field analysis (CoMFA), generates thousands of descriptors for each molecule, whereas the dataset 
typically contains biological activity for only 10 to 30 members.  While partial least squares can 
properly handle such data, it is sensitive to random noise, with the result that the true signal may be 
masked by irrelevant predictors.  QSAR workers need a new method to analyze matrices with 
thousands of correlated predictors, some of which are irrelevant to the end point.  This is an 
opportunity for a mathematical scientist to contribute an original approach to an important problem. 

The new company Arris was founded on the basis of a close collaboration of mathematicians and 
theoretical chemists.  They have produced QSAR software that examines the three-dimensional 
properties of molecules using techniques from artificial intelligence (Jain et al., 1994).  The initial 
results from this work are promising and suggest that further improvements in three-dimensional 
QSAR could result from additional collaborations between mathematicians and theoretical chemists. 
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Numerical Analysis 

Since much of current computational chemistry is based on numerical computation, it is not 
surprising to find successful transfers of information from the numerical analysis community to 
computational chemistry.  Subroutine packages such as UNPACK, EISPACK, and those in the NAG 
and IMSL libraries codify algorithms for solving linear equations and eigenproblems, developed by 
the numerical linear algebra community over a period of decades. These software packages provided 
reliable and well-documented solutions to common mathematical problems with a fixed and well- 
defined user interface.  The internal details of these components have been enhanced from time to 
time, for example, through the use of the basic linear algebra subroutines (BLAS) that allowed 
computer vendors to optimize performance to some extent without requiring significant changes to the 
source code of these packages.  This allowed them to be used effectively on vector supercomputers 
when they were introduced.  Many of the EISPACK routines were incorporated into widely used 
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quantum chemistry packages such as GAMESS, HONDO, MELD, and COLUMBUS when these 
packages were "vectorized." 

Recent advances in parallel computing have allowed much larger problems to be addressed cost- 
effectively.  The LAPACK project funded by the National Science Foundation (NSF) has developed 
software for solving linear equations on modern high-performance computers (Demmel et al., 1993). 
The Defense Department's Advanced Research Projects Agency is funding a similar project called 
PRISM to develop scalable implementations of an eigensolver based on the invariant subspace 
decomposition approach (ISDA), as well as parallel implementations of fundamental linear algebra 
operations such as band reduction, tridiagonalization, and matrix multiplication. 

A more recent advance in numerical analysis is the method of multipole expansions for computing 
long-range forces, such as Coulombic forces, more efficiently through the use of very accurate 
simplified approximations (Draghicescu, 1994) in the far field.  This has been applied successfully in 
molecular dynamics with implementations for both sequential and parallel computers (Ding et al., 
1992a,b). 

Many computational chemistry codes have been adapted to work efficiently on parallel computers 
by a variety of techniques.  Much of this has been achieved by modifying programs and data 
structures using techniques from computer science (Plimpton and Hendrickson, 1994).  However in 
other codes, new parallel algorithms have been developed.  For example, grid-based electrostatics 

BOX 3.2 Research Opportunities in Parallel Computing 

Considerable opportunities for advances remain regarding parallel computation that could impact 
computational chemistry.   For example, multigrid methods solve grid-based electrostatics problems in an 
optimal amount of work (and storage) on sequential computers.  That is, the unknown potential can be 
determined on a grid of n points in 0(n) work and storage.  However, the standard adaptation of multigrid 
methods to parallel computers is not optimally efficient.  A significant theoretical problem is whether a 
solution technique exists that uses only 0(n/p) work on a parallel computer with p processors. 

calculations (Davis et al., 1990) provide one of the most difficult simulations to parallelize with full 
efficiency, due to the long-range interactions implicit in such partial differential equations (see Box 
3.2).  No part of the problem domain can be treated independently of any other, and so there is no 
natural parallelism in such problems.  Like many algorithms in scientific computation, parallelism 
must be created at the expense of communication between processors that would be absent in the 
uniprocessor implementation. 

Despite the inherent difficulties in parallelizing such problems, novel domain decomposition 
methods have provided effective parallel iterative methods (Hin et al., 1995). These techniques allow 
extremely large problems to be solved in a moderate amount of time on massively parallel processors. 
They have been incorporated into the computer code UHBD, which has been used effectively to study 
biomedically significant enzymes in different ways, providing critical insight into the discovery of 
new behavior (Gilson et al., 1994) and even allowing the engineering of new, more effective enzymes 
(Getzoff et al., 1992). 
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Distance Geometry 

The idea of modeling complex molecules by using residue-residue cartesian distances as a guide 
for understanding the nature of protein folding and energetics stimulated work in the early 1970s 
(Kuntz, 1975; Liljas and Rossman, 1975).  It was clear, though, that more mathematical machinery 
was needed.  The area of distance geometry already existed in the work of Blumenthal (1970), while 
closely related mathematics, called multidimensional scaling, was developed by Kruskal and Wish 
(1978) and incorporated into advanced statistical packages.  In essence, distance geometry is a method 
to work in spaces with greater than three dimensions, allowing distance constraints to be satisfied that 
could not be satisfied in three dimensions.  Distance geometry helps one move from collections of 
distances between points to possible coordinates for these points.  It also helps one distinguish 
important information from the standard restrictions imposed on us by living in three dimensions. 

Tools were developed to go from upper and lower bound distances to three-dimensional structures, 
a process that required projecting an object from many-dimensional space into three.  A seminal paper 
explored what distance information was needed to determine a three-dimensional structure to a given 
resolution (Havel et al., 1979), and later work concluded that a large amount of imprecise data could 
be sufficient to determine a macromolecular structure to a high resolution (Havel et al., 1983).  This 
was the time when nuclear magnetic resonance (NMR) spectroscopists were beginning to be able to 
extract atom-atom distances for matter in solution, which could then be compared with those that 
could be found in the crystal by X-ray diffraction (Havel and Wuthrich, 1985).  Distance geometry or 

23 



BOX 3.3 Protein Microtutorial 

Proteins are large molecules composed of smaller chemical units (residues), the 20 naturally occurring 
amino acids, stably linked together in an ordered linear sequence.   The amino acids possess distinct sizes, 
shapes, and mutual interactions.  Consequently, the ordered sequence (denoted by "primary structure" of 
the protein) controls physical and biological properties.   In its simplest form, "the protein folding 
problem" consists in predicting the three-dimensional stable shape of protein molecules from the primary 
structure, to facilitate understanding those physical and biological properties. 

While the fixed chemical structure of proteins constrains most of their chemical bond lengths and the 
angles between neighboring chemical bonds to lie within tight limits, a substantial number of degrees of 
freedom describing the local amino acid packing ("secondary structure") and the overall three-dimensional 
shape of the protein (its "tertiary structure" or "conformation") remain to be determined.   It is believed 
that the conformation holds the key to physical and biological properties. An experimentally important 
type of information relevant to a protein's preferred conformation is a set of distances between selected 
amino acids. 

The folded conformation of a protein is analogous to the posture of a human body.   Body motion at 
skeletal joints plays the role of protein backbone and amino acid side chain folding degrees of freedom. 
Given a selected set of distances between skeletal joints, for instance, one might be able to infer what 
posture the human subject had adopted or at least to rule out several possibilities.  Similarly, distance 
geometry for proteins can be used to reconstruct their three-dimensional conformation. 

the related approach to refine the molecule in real space (Braun and Go, 1992) turned out to be useful 
methods to turn NOE (nuclear Overhauser effect) distances into three-dimensional structures. 
Distance geometry has continued to be a key tool in the NMR spectroscopist's arsenal, providing not 
only the structures, but also a quantitation of how accurately they are known. 

Distance geometry is an important technique in computational chemistry.  The focus of the original 
work was to predict protein structure from amino acid sequence (see Box 3.3) and work continues 
along these lines using residue-residue potentials (Maiorov and Crippen, 1992).  The use of distance 
geometry in NMR structure determination is mentioned above.  Distance geometry has also been used 
as a tool in the development of QSARs in macromolecule-ligand binding (Ghose and Crippen, 1990) 
and in a docking procedure to find different orientations that ligands can have when bound to 
macromolecules (Kuntz et al., 1982). 

An example of this last use of distance geometry is its application to the intermolecular docking of 
a small molecule to a protein, similar to what was done to produce the cover illustration.  Distance 
geometry is applied by setting the distances between interacting atoms to their ideal intermolecular 
distance (in contrast to the bond length).  The result is a general program for solving conformational 
problems involving one or more molecules with implicit interatomic constraints taken from the given 
molecular structure and explicit distance constraints added by the user.  A program by Blaney et al. 
(1990), for example, allows one to solve model building problems on complex molecular systems that 
are very difficult or impossible to solve by 
conventional methods. ■■■■■■■^^^^^^■■■■■■■■■■■■■■■■■■■i 

Distance geometry has also been used to D .g ^ ^ b of smll 

establish which, if any, three-dimensional molecules (Ugands) at the active sites of 

conformations of a set of molecules can be biomacromolecules (e.g., enzymes and 
superimposed.  One treats the whole ensemble DNA), 
of molecules simultaneously with inter- 
molecular distances set to zero if the atoms are     ^^^^^^^^^^^^^^^^^^^^^^^^^ 
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to be superimposed or to infinity if they need not be.  This has become a useful method for analyzing 
three-dimensional structure-activity relationships (Sheridan et al., 1986). 

In summary, distance geometry is a general and powerful tool for creating three-dimensional 
structures, usually by going into a higher-dimensional space and then projecting into three 
dimensions.  Its power lies in exploring "conformational" space (the universe of all possible spatial 
arrangements of a molecule) and assessing how convincingly the data (often experimental) have 
implied the structure.  It has been applied in this guise to structures from small organic ring systems 
to proteins in the ribosomal machinery.  It is clearly an area in which a fundamental technique from 
mathematics was brought to bear in important areas of structural chemistry and biochemistry (Crippen 
and Havel, 1988). 

Given the importance of all areas in which distance geometry has been applied to date (protein 
folding, ligand docking, conformational analysis), future development in this area is likely to be 
important for computational chemistry (Crippen, 1991).  Some of the remaining major mathematical 
research challenges in distance geometry applied to chemistry include (1) the need to develop 
improved sampling algorithms (e.g., partial metrization); (2) the need for practical algorithms to solve 
tetrangle and higher-order inequalities; (3) the need to develop biased sampling approaches that avoid 
previously sampled configurations; and (4) energy embedding—given a pairwise potential, how can 
one best solve for the global minimum in N-l space and then "squeeze" the system down to 3-space? 
A perspective on some of these challenges is given in recent reviews (Crippen, 1991; Blaney and 
Dixon, 1994). 
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Mathematics and Fullerenes 

The structures and properties of the fullerene molecules—"buckyballs" (see Figure 3.1) and related 
highly symmetric carbon molecules that are roughly spherical—have been linked with some very 
central areas of mathematics.1  Topology can provide insights into the types of such structures that 
can and cannot exist; the symmetries of the molecules, which underlie some of their interesting 
properties, are naturally described with group theory; and graph theory can give insight concerning 
the vibrational modes of such molecules. 

The prototypical buckyball molecule, Cgo, is composed of 60 carbon atoms linked into a shape 
reminiscent of a soccer ball, mathematically known as a truncated icosahedron.  Other fullerenes that 
have been observed are composed of more than 60 carbons, except for one member of the family that 
contains only 44.  The "surfaces" of all members are composed solely of pentagons and hexagons and 
share the property that each vertex connects exactly three edges.  (This latter property follows from 
the chemical bonding of carbon atoms.)  Such polyhedral surfaces are subject to a classic topological 
relationship derived by Euler: 

E(6-«)/n = 12, 

where the summation is over all faces of the polyhedron and/„ is the number of faces with n sides. 
This expression leads immediately to a property observed in all the fullerenes observed so far in the 
laboratory:  since n is found experimentally to take only the values 5 or 6,/5 must equal 12.  In 
addition, the formula puts no restrictions on/6, and indeed a variety of fullerene molecules with a 
variety of numbers of hexagonal "faces" have been synthesized. 

Group theory provides a methodological way of cataloging the vibrational symmetries of 
fullerenes, which can be linked to measurable energy spectra.  There are 174 vibrational modes for a 
Cgo molecule, but only 46 of these are potentially distinguishable.  Group theoretic arguments based 
on irreducible representations and Schur's lemma pare this number dramatically, explaining why the 
observed infrared spectrum contains just four absorption lines.  The same principles applied to the 

'See, e.g., Chung and Sternberg (1993), on which this section is based. 
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scattering measured by Raman spectroscopy explain why that 
spectrum should have exactly 10 lines. 

Graph theory is applied to fullerenes via Hiickel theory, 
which forms the basis of an algorithm linking stability 
properties to the eigenvalues of a so-called adjacency matrix 
(representing, in this case, which pairs of carbons are 
bonded).  Computation of the eigenvalues would be 
straightforward, at least for the smaller fullerenes, but more 
understanding comes about through mathematical analysis. FIGURE 3.1 A buckyball. 
Again by using Schur's lemma and other tools of group 
theory, the adjacency matrix can be decomposed into much smaller blocks that are amenable to 
providing clearer insight.  For Cm this technique has led to closed-form solutions of certain matrices 
(Chung et al., 1993), which in turn suggest that C«, has a stability even greater than that of benzene. 
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Quasicrystals 

Interatomic and intermolecular forces have traditionally been central concerns in chemistry, not 
only because of the useful properties that they produce, but also because the crystallography that 
emerges from those forces when matter is solidified has been a dominant tool for structural analysis 
(see the section on X-ray crystallography below).  Consequently, any striking deviation from 
conventional expectation about what interatomic or intermolecular forces can yield as solid-state 
ordering automatically concerns chemical researchers.  The recently discovered quasi-crystalline state 
falls in this category. 

That quasicrystals—orientationally ordered solids with local fivefold (or other classically 
unorthodox) symmetry but no spatial periodicity—really existed was demonstrated by Cahn et al. 
(1988) and Gratias et al. (1988).  Their data were obtained from X-ray and neutron diffraction of 
Al73Mn21Si6 single-phase icosahedral powder and were analyzed by Patterson analysis.  Their work 
showed that the data were best considered as representing a "cut" of a periodic six-dimensional 
Patterson function.  This work led to the definition of quasicrystals by the "cut-and-projection" 
method. 

What is very interesting and perhaps not so well known is that Meyer (1972), 16 years earlier and 
motivated by problems in number theory, had built a mathematical structure that he called a 
"pseudolattice," which turns out to be the correct mathematical tool for the study of quasicrystals. 
Meyer's work establishes the basic harmonic analysis for quasicrystals In his book, he studied so- 
called Pisot and Salem numbers, which can be defined as follows:  A Pisot number 0 is a root of a 
polynomial with integer coefficients of degree m such that if 02, ..., 6m are the other roots, then |0,| 
< 1, i = 2, ..., m.  A Salem number is defined in the same way, but some of the inequalities are 
replaced by equalities. 

One of the relations between Pisot or Salem numbers and quasicrystals is the following.  Let A G 
W be a quasicrystal.  If 0 > 1 and 0A C A, then 0 is either a Pisot or a Salem number.  Conversely, 
if 0 is either a Pisot or a Salem number, then there exists a quasicrystal Ag C W such that 0A C A. 
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In order to establish that result, Meyer had to establish a theory of harmonic analysis for 
quasicrystals. 

Recently, Moody and Patera (1993) have used fairly sophisticated Lie group and Lie algebra ideas 
to study families of quasicrystals.  In their work the mathematics has been used as a means of 
unifying various physical models of quasicrystals into one consistent picture. 
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Chemical Topology 

Topology is a branch of mathematics that studies properties of objects that do not change when the 
object is elastically deformed.  Topology allows stretching, shrinking, twisting—any sort of elastic 
deformation short of breaking and reassembling the object.  The basic idea in topology is to relax the 
rigid Euclidean notion of congruence and replace it with more flexible notions of equivalence.  A 
flexible molecule in solution does not maintain a fixed three-dimensional configuration.  Such a 
molecule can assume a variety of configurations (referred to as "conformation" by chemists), driven 
from one to the other by thermal fluctuations, solvent effects, experimental manipulation, and so on. 
For small molecules with complicated molecular graphs, topology can aid in the prediction and 
detection of various types of spatial isomers (Walba, 1985; Simon, 1986; Walba et al., 1988).  Recent 
triumphs in the chemical synthesis of molecules with novel topology include the molecular trefoil knot 
(Dietrich-Buchecker and Sauvage, 1989) (Figure 3.2) and the five interlocked rings of the 
self-assembling compound "olympiadane" (Amabilino et al., 1994).  For larger molecules, given an 
initial topological state, one can identify all possible attainable configurations of the molecule and can 
detect when an agent (chemical or biological) has intervened to change the topological state 
(Wasserman and Cozzarelli, 1986). 

Combinatorics, Graph Theory, and Chemical Isomer Enumeration 
In the nineteenth century, Arthur Cayley produced a body of work involving the enumeration of 

certain types of trees (connected acyclic 1-complexes); some of the enumerated trees corresponded to 
the number of certain (combinatorially possible) chemical compounds (Cayley, 1857, 1877).  This 
correspondence is obtained by abstracting a chemical molecule as a molecular graph; the vertices are 
the atoms, and the edges are the covalent bonds, with protons (hydrogen atoms) usually suppressed. 
Structural isomers correspond to the (abstract) isomorphism types of these graphs.  Enumeration of 
isomorphism types uses group theory (permutation groups) to count the intrinsic (internal) symmetries 
of these graphs.  This work was continued and expanded in the twentieth century by Poly a (Poly a and 
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Read, 1987) and others (Balaban, 1976). 
A benefit to chemistry of combinatorial enumeration 

is that one can build a (mathematically) complete list of 
molecular graphs satisfying certain similarity 
(homology) parameters of chemical interest.  As 
discussed in the section of this chapter beginning on 
page 37, the mathematical enumeration of possibilities 
is just the first in a series of steps that must be taken in 
order to extract chemically useful information (i.e., 
which of the molecular graphs are chemically 
realizable).  Of those that are realizable, how does one 
store representative graphs in a database in a manner in 
which chemically relevant queries are feasible? The 
abstract (intrinsic) isomorphism type of a molecular 
graph carries little information about the three- 
dimensional (extrinsic) configuration, and hence the 
reactivity, of chemical realizations.  How does one 
derive three-dimensional information from an abstract 
one-dimensional graph? 

W\J 
FIGURE 3.2 A synthetic trefoil.  Reprinted, by 
permission, from Dietrich-Buchecker and 
Sauvage (1989).  Copyright 1989 by VCH 
Publishers, Inc. 

Analysis of Molecular Spectra by Using Cayley Trees 
The high-resolution electronic spectra of polyatomic molecules are often very complex, consisting 

of many thousands of lines; yet they often contain significant information about molecular 
vibration/rotation structure and intramolecular dynamics.  Traditionally this information has been 
extracted by assigning quantum numbers to lines based on an assumed zeroth-order Hamiltonian. 
However there are many molecules for which the choice of zeroth-order Hamiltonian is not clear, or 
for which the spectra are so strongly perturbed from a known zeroth-order Hamiltonian that it is not 
clear how or if a spectrum can be assigned.  Statistical methods have been used to analyze these 
spectra, but most spectra contain information beyond the simple statistical limit.  Another approach is 
to examine coarse-grained spectra (Gomez Llorente et al., 1989), as such spectra sometimes reveal 
hidden structure associated with short-time molecular dynamics that can easily be interpreted. 

Recently there has been interest in using the methods of graph theory, in particular Cayley trees, 
to study complex spectra (Davis, 1993).  The basic idea is to use the spectra to construct trees by 
coarse-graining the spectra over a hierarchy of time scales.  An analysis of the statistical properties of 
these trees using methods taken from the cluster analysis literature (Gordon, 1987; Jain and Dubes, 
1988) then provides a systematic way of locating hidden structure in the spectra.  In addition, when 
quantum eigenstates are available for the spectra being studied, it is possible to use the trees to 
determine "smoothed" states that represent the underlying vibrational dynamics responsible for the 
hidden structure.  This also provides a short time picture of the vibrational motions of the highly 
excited molecule, and in many cases it is possible to relate this to the underlying classical description 
of the vibrational motions, including features such as periodic orbits, bottlenecks to intramolecular 
vibrational redistribution, and Fermi resonances. 

Group Theory, Topology, Geometry, and Stereochemistry 
Stereochemistry studies the spatial configuration of molecules.  To enumerate and distinguish 

stereoisomers, one must study symmetries of the molecule in 3-space (Cotton, 1971; Fujita, 1991). 

29 



/ 

ZI y 

Which of the intrinsic symmetries of the molecular graph are realizable by chemically reasonable 
spatial transformations?  Of particular interest in this situation is the notion of chirality (see Figure 
3.3).  A molecule in space is chiral if it is not equivalent to the configuration obtained by a flexible 
transformation plus reflection in a plane. 

Apart from energy minimization questions, the enumeration of spatial configurations and physical 
symmetries and chirality of relatively small molecules requires group theory, geometry, and topology. 
For small molecules, group theory is useful in distinguishing stereoisomers obtained by ligand 
substitution and in the study of dynamic symmetry of fluxional molecules (Longuet-Higgins, 1963; 
Smeyers, 1992).  Group theory techniques include representation theory, group characters, and so on. 
Group theory has also been applied to quantum chemical problems such as symmetry-adapted 
functions for molecular orbital theory, ligand 
field theory, and molecular vibrations (Cotton, 
1971; National Research Council, in 
preparation).  By using group theory and 
representation theory, symmetry-invariant 
properties of physical interest can be studied 
(Kramer and Cin, 1980).  Mulliken (1933), for 
example, used ideas from finite point groups 
and molecular orbital theory to assign "term 
symbols" (i.e., irreducible representation labels) 
to many excited states of small, highly 
symmetrical molecules. 

New techniques for the efficient computation 
of the fast Fourier transform (FFT) for finite 
groups (Gordon, 1987; Diaconis and Rockmore, 
1990) have potential applications in molecular 
spectroscopy and in understanding the symmetry 
of nonrigid molecules.   The unitary group has 
been used in electronic structure theory to 
develop formulas for matrix elements, 
perturbation expansions, and coupled cluster 
expansions of the Hamiltonian written in second 
quantized form.  For larger, more flexible 
molecules, the descriptive and computational ability of topology can be used to find topological 
barriers to the interconversion of a pair of spatial configurations or to the interconversion of protons 
in the molecule.   Given the completely flexible equivalences of topology, in which energy, bond 
lengths, divalent vertices, and so on are disregarded, if two spatial molecular configurations (or 
specific atoms in the configuration) are topologically inequivalent, then they are physically 
inequivalent.  Knowledge of the topological inequivalence of certain protons is useful in the analysis 
of NMR spectra (Walba, 1985; Walba et al., 1988).  Topological considerations are sometimes very 
effective in detecting chirality of chemical compounds (Walba, 1985; Simon, 1986). 

Topology of Polymers 
Macromolecules such as synthetic polymers and biopolymers such as DNA, RNA, and proteins are 

very flexible and can exhibit high degrees of spatial complexity.   Synthetic polymers can be very 
large, in some cases having on the order of 106 monomers in a polymer strand (e.g., polystyrene). 
Biopolymers (DNA, RNA, proteins) can also be extremely large, having hundreds to thousands of 
monomers.   For example, in prokaryotes, DNA plasmids are on the order of 104 nucleotides, and 

FIGURE 3.3  A chiral pair of synthetic Möbius 
molecules.  Reprinted from Simon (1992) by permission 
of the American Mathematical Society. 

30 



bacterial chromosomes are on the order of 105 nucleotides.  The effects of microscopic topological 
entanglement (knotting and linking) of polymer strands in a polymer melt are believed to be trapped 
by quenching (driving off the solvent, or cooling) and (in principle) will be observable in the 
macroscopic physical and chemical properties of the quenched polymer network (Edwards, 1968; 
Flory, 1976; deGennes, 1984). 

Polymers in dilute solution can be modeled by means of self-avoiding walks on a lattice or 
piecewise-linear curves in 3-space.   The lattice spacing serves to simulate volume exclusion; in the 
piecewise-linear case, volume exclusion can be modeled by assigning thickness to the linear segments 
of the chain.  The degree of entanglement complexity of a polymer with itself (knotting) or with other 
polymers (linking) is believed to play a significant role in many physical and chemical processes, such 
as crystallization behavior and rheological properties (Edwards, 1968; Flory, 1976; deGennes, 1984). 
A linear polymer can be modeled as a self-avoiding walk (SAW) on the simple cubic lattice Z3; a ring 
polymer can be modeled as a self-avoiding polygon (SAP) on Z3.   One can experimentally generate 
randomly embedded ring polymers by performing a cyclization (random closing) reaction on a dilute 
family of linear polymers of the same length N (Shaw and Wang, 1993; Rybenkov et al., 1993).  A 
fundamental mathematical problem is to describe the yield of such a reaction:  What is the distribution 
of knots and links produced by a random closing reaction, as a function of the length N and the 
concentration of linear substrate? A long-standing fundamental conjecture in this area was the Frisch- 
Wasserman-Delbruck (FWD) conjecture (Frisch and Wasserman, 1961; Delbruck, 1962):  The 
probability that a random polygon contains a knot tends to one as the number of edges tends to 
infinity. 

The FWD conjecture was recently solved with the development of a rigorous proof of the 
asymptotic inevitability of knotting (Soteros et al., 1992).  The mathematical quantization of 
topological entanglement for short chains can be done by Monte Carlo simulation (Kienin et al., 
1988).   In Monte Carlo simulations, knotting and linking of random chains are computed in various 
models that include volume exclusion and some energetic terms; rigorous results in various models 
include the asymptotic inevitability of knotting in random chains and the (at least linear) growth of 
certain entanglement parameters with chain length.  Monte Carlo simulation can also elucidate 
dynamic chemical phenomena such as electrophoresis (Slater and Noolandi, 1986) and adsorption 
(Smit and Siepmann, 1994).  Recent striking advances in observation techniques such as fluorescence 
microscopy for single DNA molecules (Bustamante et al., 1990) make possible the verification and 
fine tuning of some of these mathematical theories of molecular conformation and dynamic molecular 
properties. 

Knots, Links (Catenanes), and DNA 
Mathematics and molecular biology continue to benefit from productive interaction, as described in 

the upcoming report Calculating the Secrets of Life (National Research Council, in press).  One area 
of interaction is in the topology and geometry of DNA, because the spatial configuration of 
biopolymers is intimately related to function.  For example, the DNA of all organisms has a complex 
and fascinating topology.  Duplex DNA consists of a pair of DNA backbone strands (each strand is 
an alternating linear arrangement of sugar and phosphate moieties), and attached to each backbone are 
the nucleotides adenine, thymine, cytosine, and guanine.  Adenine (A) binds only to thymine (T) by 
means of a double hydrogen bond, and cytosine (C) binds only to guanine (G) by means of a triple 
hydrogen bond; the bonded pairs A-T and C-G are called base pairs.  The hydrogen bonds form the 
rungs of a ladder, and this ladder is twisted in space in the form of a right-hand helix (the usual 
Crick-Watson model for the primary structure of the double helix).  In the double helix, one 
backbone strand winds around the other on the average of every 10.5 base pairs.  The human genome 
is on the order of 3 x 109 base pairs, which amounts to some 3 x 108 interwindings.  So, human 

31 



chromosomal DNA can be viewed as two very long curves that are intertwined millions of times, 
linked to other curves, tied into knots, and subjected to four or five successive orders of coiling to 
convert it into a compact form for information storage.  For information retrieval and cell viability, 
some geometric and topological features must be introduced, and others quickly removed.  Some 
enzymes maintain the proper geometry and topology by passing one strand of DNA through another 
via an enzyme-bridged transient break in the DNA; 
these enzymes play crucial roles in cell metabolism, 
including segregation of daughter chromosomes at the 
termination of replication, and in maintaining proper in 
vivo (in the cell) DNA topology.  Other enzymes break 
the DNA apart and recombine the ends by exchanging 
them.  These enzymes regulate the expression of 
specific genes, mediate viral integration into and 
excision from the host genome, mediate transposition 
and repair of DNA, and generate antibody and genetic 
diversity.  These enzymes perform incredible feats of 
topology at the molecular level; the description and 
quantization of spatial configuration and enzyme action 
require the language and computational machinery of 
geometry (White, 1992; Wolffe, 1994) and topology 
(Sumners, 1992). 

In the topological approach to enzymology 
(Wasserman and Cozzarelli, 1986), the topological 
invariance of knotted (see Figure 3.4) and catenated 
DNA during experimental work-up and the 
computational power of topology are exploited to capture information on enzyme action.  For in vitro 
(in a test tube) experiments, an enzyme extracted from living cells is reacted with circular DNA 
substrate produced by cloning techniques.  The enzyme reaction produces a topological signature in 
the form of an enzyme-specific family of supercoiled DNA knots and links (catenanes).  By observing 
changes in DNA geometry (supercoiling, or interwinding of the DNA upon itself) and topology 
(knotting and linking) by means of gel electrophoresis and electron microscopy of the reaction 
products, the enzyme mechanism can be characterized mathematically (Sumners, 1992).  Because of 
the enormous variety of knot and catenane structure, fine details of DNA structure and enzyme action 
can be selectively assayed. 

^ 

FIGURE 3.4  A DNA trefoil.  Courtesy of 
N.R. Cozzarelli and A. Stasiak. 
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Graph Theory 

Application of Graph Theory to Organizing Chemical Literature 
To organize the chemistry literature for research or patent purposes, it is essential that scientists be 

able to search this literature by the chemical features of interest as well as with traditional text 
queries.  Accordingly, a body of experience has been developed for using computers to recognize 
either total chemical structures or parts of them from an input structural diagram and to quickly 
identify in databases of millions of compounds those that match the search criteria (Ash et al., 1985). 
Currently there are several large comprehensive chemical databases such as those maintained by 
Chemical Abstracts (Dittman et al., 1983) and the Beilstein Institute.  (The Chemical Abstracts 
substance database, for example, contains information on 13 million substances, including molecular 
formulas and structure diagrams where available.) Chemical and pharmaceutical companies maintain 
such chemical information databases of their own compounds using either commercial (e.g., MDLI, 
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DARC, Daylight) or self-written software. 
A key element to the success of such chemical information systems was the recognition that a two- 

dimensional chemical structure diagram can be treated as a labeled graph (Sussenguth, 1965).  Many 
algorithms and concepts from graph theory (Harary, 1976) have been applied to chemical 
informationproblems, for example, the concepts of graph isomorphism to identify whether a particular 
compound is in a database and subgraph isomorphism to identify compounds that contain 
substructures of interest, algorithms to detect the smallest set of smallest rings as an aid to unique 
atom numbering heuristics, and subgraph ("clique-detection"—see Box 3.4) algorithms to detect the 
maximum common substructure in two molecules.  These ideas have recently been extended to 
provide rapid searches of databases of tens to hundreds of thousands of molecules to find those that 
match a three-dimensional query—typically based on distances, angles, and torsions between points in 
the stored three-dimensional structure of the molecules (Borman, 1989; Bures et al., 1994). 
Generally there are between 4 and 20 distance and angle constraints to be matched in a three- 
dimensional query:  the number of hits decreases with the number of constraints.  Recently, 
commercial programs have been updated to include consideration of conformational flexibility. 

Graph algorithms are used increasingly to solve similar problems in molecular modeling and 
computational chemistry (Martin et al., 1992).  For example, to use a molecular mechanics program 
to optimize a molecular structure, each atom must be assigned an atom type based on its substructural 
environment.  Chemical information tools are used to recognize such substructures.  Modeled three- 
dimensional structures are stored in a chemical information database with the result that it is easy to 
find a prebuilt analogue of a new compound one wishes to build.  Others have devised programs that 
build three-dimensional structures of molecules from their two-dimensional structures by finding the 
maximum common overlapping substructures in a database of three-dimensional structures and piecing 
these together (Wipke and Hahn, 1988; Leach et al., 1990). 

Methods based on graph theory have also been used to find common three-dimensional features 
within a set of molecules (Crandell and Smith, 1983; Brint and Willett, 1987; Martin et al., 1993). 
In particular, the Bron-Kerbosh clique-detection algorithm has been found to be especially fast (Brint 
and Willett, 1987).  Such common three-dimensional features might represent a pharmacophore, the 
set of three-dimensional features that determines whether or not a molecule will show a particular 
biological activity.  For example, Figure 3.6 depicts three different molecules that activate the D2 
dopamine receptor.  The figure shows that although these molecules look different in two dimensions, 
in three dimensions they share the arrangement of a hydrogen bond donor, its projection to a receptor 
hydrogen bond acceptor, a positively charged nitrogen, and its projection to an anionic site on the 
receptor (Martin et al., 1993). 

Two-dimensional structures describe the connectedness of the atoms in a molecule.  The training 
of a chemist involves learning how to translate these two-dimensional pictures into chemical 
properties.  Thus, an OH means one thing to a chemist, but something different to other folks.  Since 
molecules are really three-dimensional (with added dimensions of properties), it is important to 
translate the two-dimensional structure into three dimensions for computer processing.  People have 
used the same type of graph-processing algorithms to detect parts of molecules that have certain three- 
dimensional properties and to then glue the three-dimensional pieces together much as when using a 
Tinkertoy.  The methods are expert systems in that they use other knowledge, not first principles. 
They operate by using graph-matching ideas. 

Clique-detection methods are also used to propose docking orientations of small molecules to 
macromolecules (Kuntz et al., 1982; Kühl et al., 1984; Smellie et al., 1991; Kuntz, 1992).  The 
computer program DOCK searches databases of tens of thousands of molecules to find those that fit 
into a macromolecular binding site of known three-dimensional structure (Kuntz, 1992).  A number of 
structurally novel enzyme inhibitors have been identified by this means. 
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BOX 3.4 Clique Detection 

In graph theory terms, a clique is a subgraph in which every node is connected to every other node. 
For three-dimensional molecular structures, the nodes of the graph might typically be the atoms of the 
structure labeled according to atomic symbol and the edges are the distances between the points.  Clique- 
detection algorithms find cliques in an input graph that match a clique in a reference graph.  That is, they 
find corresponding points in the two three-dimensional structures such that corresponding points are of the 
same type in the two structures and all corresponding interpoint distances are identical within some 
tolerance. 

In Figure 3.5, two different cliques in the same molecule are indicated, as is one clique of a second 
molecule.  As shown, the matching cliques in the two molecules can be superimposed.  Notice that the 
points do not superimpose exactly since the lengths of the edges need only be identical within some 
tolerance. 

A molecule with a Another clique in the     A second molecule with 
clique marked. same molecule. a clique marked. 

The two molecules superimposed over their matching cliques. The 
corresponding atoms are in shaded ellipsoids. 

FIGURE 3.5  The basic operation of clique detection. 

In general, these advances have not been the result of active collaborations between graph theorists 
and chemical information specialists.  Rather, the chemical information specialists have followed the 
graph theory literature, and when a particular concept or algorithm seemed the appropriate solution 
for some problem, they would attempt to implement it.  Sometimes this meant waiting until a 
graduate student with the particular skills was available.  For example, in the case of the Ullman 
subgraph isomorphism algorithm (Ullman, 1976), Peter Willett suspected that it would be an 
improvement over the one used in chemical information systems at that time, and several graduate 
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2D chemical structures of three molecules that activate the D2 receptor. 

NPr2 

3D overlay of these molecules in the proposed pharmacophore map. 
The points for superposition are marked with an arrow. 

Site H-bond 
acceptor 

Electronegative 
atom 

Basic nitrogen 
atom 

Site H-bond 
acceptor 

FIGURE 3.6  Development of a pharmacophore map.  Reprinted (with adaptions) by permission from Martin et 
al. (1993).  Copyright 1993 by ESCOM Science Publishers B.V. 

students tried to implement it.  It was not successfully implemented, however, until Andrew Brint, 
who was well trained in mathematics, took up the challenge.  Since that time, 1986, the Ullman 
subgraph isomorphism algorithm has replaced the previous algorithms in all commercial chemical 
information systems (Willett, 1987). 

Application of Graph Theory to Representation of Chemical Reactions 
The synthesis of organic chemicals is an art that takes many years of training and experience to 

master.  There are two aspects to synthesis: design of the synthetic pathway (what precursors and 
general reaction conditions will be used) and laboratory execution of the actual synthesis. 
Experienced synthetic chemists design the synthesis of new molecules based on their knowledge of the 
hundreds of types of reactions that can be done, their limitations in terms of the other structural 
features of the molecules that will survive the reaction conditions, and the usual success of the 
reactions in terms of side products and yield. 

The complication with using the computer to aid in this process is that synthetic organic chemists 
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rely primarily on information contained in two-dimensional chemical structure diagrams.  A chemical 
reaction is simply a transformation of one diagram into another by combining and transforming 
starting materials into products.  Hence, the expertise is organized intellectually in pictures, not 
numbers.  The key insight that these structure diagrams can be described as labeled graphs enabled 
the use of the computer to process structure diagrams. 

Computer programs for designing the synthesis of compounds also rely heavily on these algorithms 
(Wipke et al., 1978; Wipke and Rogers, 1984; Hanessian et al., 1990; Pensak and Corey, 1977; 
Johnson et al., 1992; Gasteiger et al., 1992).  For example, it is essential to detect the smallest set of 
smallest rings since these form the basis of the synthetic strategy.  Structure searching is used to 
ascertain if a proposed precursor is commercially available.  Substructure searching identifies labile 
bonds to be broken in a retrosynthetic fashion.  Maximal common subgraph algorithms have been 
used on the two-dimensional structures of products and reactants to perceive the part of a molecule 
unchanged in a chemical reaction (McGregor and Willett, 1980)—what is common between product 
and reactant is unchanged. 

Two approaches have been used to apply the computer to the design of chemical syntheses.  The 
first simply catalogues literature chemical reactions, transformations, with the associated starting 
materials and product(s), conditions, yield, and literature reference.  For this application, the 
chemical reaction can be input as normally written and the computer can be used to detect which parts 
of the molecule are not changed.  By definition, then, the parts of the molecular graph that change 
represent the chemical reaction.  The unchanged parts represent the chemical context in which the 
reaction occurs.  In graph theory terms, the unchanged parts are the maximum common subgraph of 
the reactants and products.  The second type of computer program to aid the planning of synthesis 
involves the actual disconnection of the synthetic target into the proposed starting materials.   Such 
computer programs treat molecules as labeled graphs but use rules encoded by experts to guide the 
proposed synthetic route.  Because of the large number of rules to be encoded, such retrosynthetic 
programs are much less complete and of less general use than the reaction library programs. 
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X-Ray Crystallography 

An excellent source on the topic of X-ray crystallography is the article by Nobel laureate Herbert 
A. Hauptman (1990), from which the following is excerpted with permission of Plenum Publishing 
Corporation. 

"It was recognized almost from the beginning that the diffraction pattern, the directions 
and intensities of the X-rays scattered by a crystal, is uniquely determined by the crystal 
structure; which is to say that if one knew the crystal structure—the arrangement of the atoms 
in the crystal—then one could calculate the diffraction pattern completely.  It turns out that, 
conversely, diffraction patterns determine, in general, unique crystal and molecular structures, 
although this fact was not known until many years later.  In short, the information content of a 
typical molecular structure coincides precisely with the information content of its diffraction 
pattern.  It is a measure of the great advances made by the new science of X-ray 
crystallography that, nowadays, one can routinely transform the information content of a 
diffraction pattern into a molecular structure, at least for the so-called "small" molecules, that is 
those consisting of some 150 or fewer non-hydrogen atoms. 

"Since X-rays, like ordinary visible light, are electromagnetic waves, they have a phase as 
well as an intensity, just as any other wave disturbance.  In order to work backwards, from 
diffraction patterns to crystal and molecular structures, it turns out to be necessary to measure 
not only the intensities of the X-rays scattered by the crystal but their phases as well. 
However, the phases cannot be measured in the ordinary kind of diffraction experiment; they 
appear to be irretrievably lost.  Only the intensities can be directly measured.  This then gives 
rise to the central problem of X-ray crystallography, the so-called phase problem, how to 
deduce the values of the phases of the X-rays scattered by a crystal when only their intensities 
are known .... 

"Because the needed phase information was lost in the diffraction experiment, it was 
thought that one could use arbitrary values for the phases associated with the measured 
intensities of the scattered X-rays.  In this way one obtains a myriad of different crystal 
structures, all consistent with the known intensities.  It therefore came to be generally believed 
that a procedure for going directly from the measured intensities to crystal structures could not, 
even in principle, be devised. By the same thinking, the problem of deducing the values of the 
individual phases from the diffraction intensities, the so-called phase problem, was also thought 
to be unsolvable, even in principle.  It wasn't until the early 1950's, through the exploitation of 
special properties of molecular structures and through a simple mathematical argument, that 
these erroneous conclusions were finally refuted. 

"My work on this problem started in 1948 about a year after I joined the Naval Research 
Laboratory in Washington, D.C. and initiated my collaboration with Jerome Karle. . . . The 
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first important contribution that Karle and I made was the recognition that it would be 
necessary to exploit prior structural knowledge to transform the phase problem from an 
unsolvable one to one that was solvable, at least in principle.  Our first step in this direction 
was to exploit the nonnegativity of the electron density function ^(r).  Before our analysis was 
complete, however, David Harker and John Kasper [1948] published their famous paper ... in 
which they derived inequalities in which the measured intensities restrict the possible values of 
the phases.  This was a very mysterious paper, because nowhere in it does there appear any 
explicit mention of the basis for the inequality relations, and indeed the most important fact is 
conspicuous by its absence.  It is simply that the electron density function is nonnegative 
everywhere.  This fact is, however, implicit in Harker and Kasper's work.  In very short order 
Karle and I completed our own analysis and derived the complete set of inequality relationships 
based on the nonnegativity of the electron density function [Karle and Hauptman, 1950] .... 
It includes the Harker-Kasper inequalities as a special case, and many others besides.  Although 
the complete set of inequalities greatly restricts the values of the phases, the relations appear to 
be too intractable to be useful in applications, except for the simplest structures, and their 
potential has never been fully exploited .... 

• "Beyond any doubt our most important contribution during the early 1950's was the 
introduction of probabilistic techniques—in particular, use of the joint probability distribution of 
several diffraction intensities and the corresponding phases—as the central tool in the solution 
of the phase problem [Hauptman and Karle, 1953]. ...  We assumed to begin with that all 
positions of the atoms in the unit cell of the crystal were equally likely, or, in the language of 
mathematical probability, that the atomic position vectors were random variables, uniformly 
and independently distributed.  With this assumption the intensities and phases of the scattered 
X-rays, as functions of the atomic position vectors, are also random variables, and one can use 
the methods of modern mathematical probability theory to calculate the joint probability 
distribution of any collection of intensities and phases.  A suitably chosen joint probability 
distribution leads directly to the conditional probability distribution of a specified structure 
invariant, assuming again an appropriately chosen set of diffraction intensities.  The conditional 
distribution in turn leads to the structure invariant, an estimate of which is given, for example, 
by its most probable value.  Once one has a sufficiently large number of sufficiently reliable 
estimates of structure invariants, one can use standard techniques to calculate the values of the 
individual phases, provided that the process incorporates a recipe for specifying the origin. 

"Although probabilistic methods played an essential role in the development of the direct 
method and provided it with its logical foundation, it must also be pointed out that 
nonprobabilistic methods also played an important part ....  In particular the well known 
Sayre equation, a relationship of fundamental importance among measured magnitudes and 
unknown phases, continues to be useful to the present day and lies at the heart of some of the 
more successful computer programs for solving crystal structures. 

"I cannot conclude this brief account of the early history of the direct methods of X-ray 
crystallography without also describing the reception this work received at the hands of the 
crystallographic community.  This was, simply, extreme skepticism, if not outright hostility. 

"Today some 100,000 molecular structures are known, most determined by the direct 
methods, and about 5,000 new structures are added to the list every year.  It is no exaggeration 
to say that modern structural chemistry owes its existence to this development .... 

"Work on the phase problem continues to this day and applications to structures of ever 
increasing complexity continue to be made.  It still appears that progress is made only in 
proportion to our ability to bring more powerful mathematical techniques to bear on this 
fascinating problem." 
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Remark 
The committee can only add its belief that the last quoted sentence from Hauptman's account has wide 
applicability to problems of chemical interest, some of which are described in the next chapter. 
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4 
MATHEMATICAL RESEARCH OPPORTUNITIES FROM 

THEORETICAL/COMPUTATIONAL CHEMISTRY 

Introduction 

This chapter highlights some of the most prominent research challenges from theoretical/ 
computational chemistry that appear to be amenable to attack with the help of reasonable advances in 
the mathematical sciences. Most of the sections have as their starting point a challenge facing the 
chemical sciences, which is described in terms that should be accessible to the nonspecialist.  The 
remaining sections—"Molecular Dynamics Algorithms," "Multivariate Minimization in Computational 
Chemistry," and "Fast Algebraic Transformation Methods"—contain discussions of topics from the 
mathematical sciences with specific insight into their relevance to theoretical/computational chemistry. 
Expositions and references are meant to give the mathematical reader sufficient insight and direction 
to be able into subsequently investigate the topic via deeper reading and especially by discussions with 
colleagues from the chemical sciences.  Note that the topics surveyed in Chapter 3 are also sources of 
continuing research opportunity, some of which are identified therein. 

As an overview of this chapter and a guide for navigating through it, the matrix in Figure 4.1 
displays a subjective assessment of the depth of potential cross-fertilization between major challenges 
from theoretical and computational chemistry and relevant topics in the mathematical sciences.  This 
matrix is based to some extent on intuition because it is an assessment of future research 
opportunities, not past results.  An "H" in the matrix implies an overlap that appears clearly 
promising, while an "M" suggests that some synergy between the areas is likely.  The absence of an 
H or an M should not be taken to imply that some clever person will not find an application of that 
technique to that problem at some point. 

Two topics, polymers and protein folding, are consciously underrepresented in this report because 
the mathematical research opportunities related to these topics have been surveyed very recently by 
other reports from the National Research Council.  For a discussion of mathematical opportunities 
related to the frontiers of polymer science, see pages 153-168 of Polymer Science and Engineering: 
The Shifting Research Frontiers (National Research Council, 1994).  A chapter devoted to 
mathematical research into protein folding may be found in Calculating the Secrets of Life (National 
Research Council, 1995). 
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Numerical Methods for Electronic Structure Theory 

Most of the recent progress in theoretical chemistry has come from computation of numerical 
approximations to the solutions of realistic model problems.  This has largely replaced earlier 
approaches based on analytic solutions to simplified model problems.  Although there are interesting 
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intellectual problems involved with analytic properties of the exact solutions, progress to date with 
this approach has had little impact on chemistry. 

In quantum chemistry, improved numerical approximations made possible by the greatly decreased 
cost (in dollars and personnel time) of computing have had an enormous impact.  The Journal of the 
American Chemical Society, which once reluctantly accepted a limited number of articles reporting 
computational results, now has some computational aspect coupled with experimental results in more 
than half of the articles published. 

The Schrödinger wave equation was introduced earlier, in Box 2.1.  The primary method now 
used to obtain useful results may be described briefly as follows.  The time-independent, 
nonrelativistic Schrödinger equation for a system of N electrons in the Coulomb field generated by K 
nuclei may be written in the Born-Oppenheimer approximation (using reduced units to eliminate mass 
and Planck's constant) as 

where 

is the Hamiltonian operator with 

H = T + V (2) 

N 
■2 T = -1/2 Y,  v/ . 

N        K 
y=-EEZ,^'+EE $ (3) 

i=l     /f=l i       j>i 

$ = ^k(rvr2,...,rN;RvR1,...,RK), 

U = Uk(RvR2,...,RK) 

where r,- is the position vector for the zth electron and R, is the position vector for the /th nucleus with 
charge Z, . 

This is a partial differential eigenvalue equation in 37V variables.  The equation and its solutions 
are parameterized by the nuclear positions and charges.  The eigenvalues Uk, viewed as functions of 
JR„ yield the potential energy surfaces for the molecule in its ground and excited states after including 
the repulsive internuclear interactions.  The lowest eigenvalue, in particular, plays a fundamental role 
in understanding the chemical properties of a chemical system. 

Equation (1) may be solved subject to either bound state or scattering boundary conditions.  For a 
bound state, the function \p should give finite values for the integrals  J ^*0^d3r,d3r2 ...  for 6 = 1, T, 
or V, where the asterisk denotes complex conjugation.  For a scattering state, the wavefunction may 
have an exp (z'k-r) behavior for large | r |.  The wavefunction is further subject to conditions of 
continuity everywhere and differentiability except at the singularities in V. 

The Hamiltonian is symmetric under permutation of the electron coordinates.  Consequently, the 
eigenfunctions can be chosen to form bases for irreducible representations of the permutation group. 
It has been found empirically that only a few irreducible representations actually correspond to 
physical reality and the rest are "excluded."  This observation is summarized in the Pauli exclusion 
principle.  In the standard labeling of the irreducible representations of the symmetric group by a 
partition of TV into the sum of integers, only those partitions containing no integers greater than 2 are 
observed. 

45 



In quantum chemistry, this observation is usually implemented by introducing an additional 
discrete value, called the spin £,, for each electron.  This variable takes only the values +1/2.  The 
permutation operator is then defined to interchange the spin and position of a pair of electrons in the 
extended function \l/(r^u r2£2, . . . ).  The Pauli exclusion principle then is simply stated by 
observing that the only \j/ that occur in nature change sign under every pairwise permutation of the 
electron coordinates. 

Equation (1) has no closed-form solutions for nontrivial chemical systems.  The most important 
problem in electronic structure theory is the rapid construction of useful approximate solutions to this 
equation.  While chemists have made much progress on this problem, there is always the possibility 
that a fresh approach by mathematicians would lead to novel approaches.  There is less possibility that 
changing the implementation of the methods now in use would lead to great improvement. 

The dominant approach for obtaining approximate solutions at present is based on multiple 
expansions.  First, a basis set is selected in three-dimensional space.  Then this is transformed by a 
similarity transform to an orthonormal set of 
functions called "molecular orbitals." These ^^^^^^——ami^^^^^^^^mm——^^^ 
orbitals are then used to construct Slater 
determinants, which are the simplest functions Slater determinants are determinants whose 
in 3N dimensions that obey the Pauli condition elements are n distinct orbitals for n distinct 
of antisymmetry under permutation of the e ectrons- 
positions and spins of the electrons.  Finally, T   .   „ _,     _   , . 
f, *     ^      , • JJ i- In the Hartree-Fock approximation an exact 
the wavefunction \p is expanded as a linear ,    .. ,     ,,    ... .. . .    , ..     .        _ „,        , . „        , wavefunction is replaced with an antisymmetnzed 
combination of Slater determinants.  Often, the product of single.particle orbitals (i-e-i a Slater 

transformation from basis functions to molecular        determinant) 
orbitals is chosen to optimize an approximation 
to the wavefunction from a severely truncated -iBB—B^^1Biliiiiiii||||i||liiB^^ 
expansion in Slater determinants.  The 
coefficients in the Slater determinant expansion and the approximate eigenvalue U may be computed 
by the Rayleigh-Ritz variational principle, perturbation theory, cluster expansions, or some 
combination of those methods. 

All of these methods require formation of matrix elements of the Hamiltonian in the Slater 
determinant basis, 

Hu =  E    f  ^,H^d\d\.., (4) 
«■•■•{*   J 

where $ is a Slater determinant and the integration is over 3N dimensions.  For a finite basis of 
orthonormal molecular orbitals, it is possible to replace this equation by a different one that gives the 
same matrix element 

Hrj=<^\H\^>. (5) 

This is accomplished by utilizing an operator algebra that facilitates manipulation of Slater 
determinants, in which at is an annihilation operator and a/ is a creation operator.  A correspondence 
can be established between the function space formed by all possible linear combinations of Slater 
determinants and the vector space formed by the creation operators so that 

i*/> = <*taL-a!\0> = i'V-^> **/• (6) 

That is, the Slater determinant, $„ in which the orbital labels *',... iN appear, corresponds to the 
abstract element |$7>.  The operator H, called the "second quantized Hamiltonian," takes the form 
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ß = Eh8 a?aj+ 1/2£ w^-V, (7) 

where, in terms of the orbitals <£,-, 

h.. =  U,*(-1/2V2 - DZ/;1)^   and 
3 A (8) 

8m = J^iW^ViW^VV 
A major bottleneck in the present approach is the calculation of a large number of six-dimensional 
integrals gijkl.   The choice of basis set is limited to those functions for which these integrals are 
readily computed. 

The second major bottleneck is the actual calculation of U for this second quantized Hamiltonian. 
Although the values of | U\ for various chemical systems vary from 0 to several thousand, the range 
of U for interesting variations in the parameters for a given system is typically only 10"1 to 10"3. 
Most programs determine U to a precision of 106, regardless of the absolute magnitude.  Because of 
the multiple expansions involved, the error in U is often 10"1 to 10~2, but the error is often constant 
over the interesting range of nuclear position parameters to within ±10%. 

A major advantage of some of these procedures for obtaining U is that first and second derivatives 
with respect to the nuclear coordinate parameters can be obtained analytically.  This has greatly 
facilitated searching U in this parameter space for minima, saddlepoints, and so on.  The major 
disadvantage has been the very steep dependence of computer time on the number of electrons. 
Evaluating U for one set of parameters typically takes computing time proportional to A?*, with k 
ranging from 3 for the least accurate methods to 7 for the best methods now in common use.  Finding 
one eigenvalue of H in the full vector space is even more costly, with computer time proportional to 
MAf+4, where M is the number of basis functions.  Consequently, accurate calculations are limited to 
about 40 electrons and an improvement of a factor of 10 in computer speed will not change this very 
much. 

Although this approach is very productive, it is also limited to small chemical systems.  Progress 
for somewhat larger systems can be made by use of the Hohenberg-Kohn and Kohn-Sham theorems to 
give a useful density functional theory.  These assume that it is possible to find an effective one-body 
potential a so that, by solving the one-electron Schrödinger equation 

(-1/2V2 + a)0. = £,.</>,. , 

the eigenfunctions 4>\ will yield 

P(r) =EIWI2' (9) 

where p is the exact charge density of the system as defined by Equation (13) below, using the exact 
wavefunction defined by Equation (1).  As before, a, <j>, and e, are parameterized by the nuclear 
charges and positions.  Here a is a functional of p.  From p, the lowest potential energy surface U 
can be formed.  The difficulty is that there is only an existence proof for a and no systematic 
constructive procedure is yet known.  Nevertheless, much progress has been made by choosing a 
empirically so it will correctly reproduce the properties of simple model systems such as the uniform 
electron gas and free atoms.  The attraction of this method is that the computational cost grows only 
as iV.   Effort is being made to improve this even further to obtain methods whose costs grow as iV2 

oi N. 
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Progress with density functional theory has been rapid in recent years.  Direct solution of the 
Kohn-Sham equation on a three-dimensional grid now is possible, although basis set expansions are 
still more commonly used.  The major limitation in this field is still the lack of a scheme for finding 
the effective potential that can guarantee the desired accuracy in U for all chemical systems of 
interest. 

For even larger systems, solution of the Schrödinger equation seems hopeless.  In this case, U is 
usually directly approximated by taking advantage of empirically observed near-transferability of 
parameters between similar chemical systems.  This requires some input from the user of these 
programs to decide which atoms are bonded.  Then, near a local minimum in U, it is possible to 
approximate U as a sum, 

U = ]T AU (for displacements from normal bond lengths and bond angles) 

+ ^2 AU (for pairwise nonbonded interactions). (10) 

Each pair of nonbonded atoms can be assigned parameters transferred from experimental data to allow 
a calculation of a AU(RAB) energy contribution.  Similarly, each chemically distinct type of bond can 
be assigned an energy for displacement from its usual bond length.  Functions constructed in this way 
have accuracy approaching the desired 103 level needed for chemical prediction.  This approach is 
now used for widely different problems, such as rational drug design, structure of liquids, predicting 
the shape of moderate-sized organic molecules, and protein folding. 

There are many problems in numerical analysis and data handling associated with the present 
methods.  These include the generation and manipulation of large numbers of six-dimensional 
integrals, finding eigenvalues and eigenvectors of large matrices, and searching a complicated 
function for global and local minima and saddle points.  There are also important questions about the 
construction of optimum expansion functions for most rapid convergence.  At present, there are no 
useful error bounds for the energy or other properties derived from the wavefunction. 

The N- and V-Representability Problems 

Conventional approaches for computing the solution to the wavefunction have a strong dependence 
on the number of electrons.  Therefore, searches are constantly under way for methods of comparable 
accuracy with a better scaling.  In this regard, people have considered methods based on density 
matrices, density functional, Monte Carlo diffusion equations, effective core potentials, and so on. 
In particular, because the energy of an atom or molecule is a linear function of the density matrix and 
the one- and two-body distribution functions derived from it, density matrix methods raise the hope 
that one could dispense with computing the associated 3iV-dimensional wavefunction and deal with 
simpler three-dimensional density functions.  A number of mathematical issues are raised by the 
attempt to reformulate computational chemistry in terms of particle distribution functions instead of 
wavefunctions. 

The N-body distribution function is given simply as the product of the wavefunction and its 
complex conjugate, 

If>(x|*') =*,■(*)&*(*')• (11) 

Here, x symbolizes the collection of coordinates xu x2, . . . , xH, describing the positions r, and spins 
£, of all N particles.   In the chemical literature, this quantity is usually called the N-bo&y density 
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matrix.  This may be averaged over an ensemble with an arbitrary set of probabilities (weights) w, to 
give the ensemble distribution, 

Tw = Ew,.rr ,      w. > 0 ,   Ew. = 1. (12) 

Because of permutational symmetry, all identical particles enter this distribution in an equivalent way. 
From the iV-body distribution, one- and two-body position distribution functions can be obtained by 
integration over the other coordinates: 

r<2> = £  f... [ dV3.. A\ Tm (Xlx2xr. .xN | Xl'x2' x3.. .xw), 

P(rvr2) ='£r<-7>(x1x2\xlxj, 
f.r. (13) 

l(r12) = j d\P(r2 + r12,r2), 

pit,) = \tfr2P(rvr2). 

The distribution function P(xr,x2) is also called the two-body reduced density matrix.   Similarly, the 
density matrix may first be Fourier transformed and then used to derive the one-body momentum 
distribution 

TT^) = (2TT)-
3
 £    [ [ [ dW3/-/ e'ip'r' e^' T^ix^x^ x2)8^, . (14) 

For most cases of interest, knowledge of the one- and two-body position distribution functions and the 
one-body momentum distribution function suffices to determine the energy.  For the Hamiltonian H 
with given external potential VJr^ and given two-body interaction potentials g(rtj), 

N 2 

LL  + V   V (A  + V   9(r\ (15) 

the energy is given by 
M      2m i i>j 

Nt £L 7r(p)d3p + N\ Va(r)p(r)d*r 

+ ^Lli)|,(r12)T(r12)d3r12. 

(16) 

There are a number of outstanding mathematical problems associated with these distributions.  For 
many potentials, the behavior of p(r) is known near the singularities of the potential.  Similarly, the 
behavior of y(ri2) is known for a Coulomb interaction near the singularities, and the form of ir(p) is 
known for large and small p.  The N-representability problem consists of finding the conditions on 
this set of three functions such that they could all come from the same JV-body density matrix.  Many 
inequalities are known, but no general solution has been obtained.  The V-representability problem 
consists of determining the further restriction imposed by considering only those distributions that can 
come from a wavefunction that is the eigenfunction of some H for a fixed g. 

The two-body reduced density matrix T(2) can be integrated to give the one-body reduced density 
matrix 
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r^CxJ*/) =  f d3x2 T^ix^lx^x,). (17) 

Density matrices may be treated as integral kernels and factored in terms of their eigenfunctions 

ro'CxJ*/) =E,,#*1)/1*(x1') (18) 

where 

| ^(xjx/)/,^')^^' =^.(x1). (19) 

These functions^ are known as natural orbitals. It is conjectured, but not proved, that they form a 
complete set when T(1) is derived from an exact eigenfunction of H with Coulomb interactions. The 
complementary functions 

*)(*!• "*W-l)   =   }   d\fi(XN)   1K*I-*JV) 
(20) 

are certainly not complete in the 3(N - 1) dimensional space.  The extended Koopmans theorem 
claims, however, that if \p is the exact eigenfunction of H for an Af-electron system, then the ground 
state wavefunction of the N - 1 electron system may be expanded exactly in the set of F,.  Both 
"proofs" and "disproofs" of this conjecture exist in the literature (see Morrison, 1993, and Sundholm 
and Olsen, 1993, for a recent exchange of opinions and a list of relevant earlier papers). 

Because the energy is a linear function of the one- and two-body distribution functions, the 
variational minimum will lie on the boundary determined by the N-representability conditions. 
Unfortunately, only an incomplete set of necessary conditions are known, but these are already so 
complex that further work in this area has been abandoned by chemists. 

In density functional theory, only the density p(r) is used.  Hohenberg and Kohn showed that the 
energy is a functional of this density for a fixed two-body potential g(rtj).  Density functional theory 
has become of practical importance, but progress is hindered by lack of knowledge of the properties 
of the functional and lack of a systematic procedure for constructing a convergent sequence of 
functionals.  Some past work in this field has been summarized in several monographs (Davidson, 
1976; Dahl and Avery, 1984; Kryacho and Ludena, 1989; March, 1989; Parr and Yang, 1989; Sham 
and Schlinter, 1989; Gadre and Pathah, 1991). 
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Melding of Quantum Mechanics with Simpler Models 

A daunting challenge for the future is to accurately model chemical reactions in phases and at the 
active site of enzymes.  An ability to do so would be of great importance in designing new biological 
catalysts as well as fully understanding the chemical mechanism of those that already exist.  This 
would be of significant technological as well as scientific importance.  One could imagine that many 
new molecules could be made and made much more efficiently by such catalysts. 

Methods to do this in an approximate way have been available since 1976 (Warshel and Levitt, 
1976) and have involved using the Schrödinger equation (Equation 1 or a variant or empiricized form 
of it) for the parts of the system where bonds are being made or broken and thus the electronic 
structure is changing, combined with representations such as Equation (10), which assume 
transferable electronic structure, for the remaining atoms of the system.  Typically, the number of 
atoms for which Equation (1) must be solved is much smaller, of the order of 20 to 30, than the 
number in the whole system, which for the chemical reactions mentioned is typically more than a 
thousand. 

In fact, some exciting results for simple reactions involving organic molecules in different solvents 
have been achieved (Blake and Jorgensen, 1991).  In these cases, one has solved Equation (1) to high 
accuracy for a simple reactive pathway in vacuo and then, employing these energies, has used free 
energy calculation methods to evaluate the solvation free energy of different structures along the 
reactive pathway.  This is in some sense a proof of concept for the combined application of Equations 
(1) and (10) because impressive agreement with experiment has been achieved in these simple, well- 
defined cases. 

For more complex cases, such as enzyme reactions, the reaction pathway might involve many 
steps, and some of the reacting groups are chemically bonded to the protein, thus requiring some 
additional technical challenges in simulating the atoms at the junction between those that are 
participating in the chemical reactions and those that are not.  In addition, one might have to consider 
many conformations of the enzyme and its substrate and accurately represent their relative energy by 
using the energy function of Equation (10), all the while considering the electronic energy (Equation 
1) and the relative total free energy of the system. 

As noted above, progress on this problem has been made when employing much simplified 
representations of the electronic structure of the system, which enable the solution of equations such 
as Equation (1) for the few "quantum mechanical" atoms as rapidly or more so than the classical 
molecular dynamical equations of motion, using Equation (10) as a potential energy (Field et al., 
1990; Warshel, 1991). 

These methods use semi-empirical or empirical valence bond approximations to solve Equation (1). 
Although these methods are not highly accurate, the use of non-empirical quantum mechanical 

51 



BOX 4.1 Electronic Phase Transitions 

The electronic properties of extended bulk materials such as metals and superconductors have been 
studied extensively by physicists.  However, as the field has progressed from simple elemental materials 
to more complex synthetic ones, computational chemistry has come to the fore in addressing these 
problems.  The "exotic materials" include the organic superconductors such as Bechgaard salts, 
polyacetylene, the fullerenes, and the high-temperature superconductors based on copper oxides.   In 
addition, many new amorphous materials are technologically interesting in their electronic properties.  For 
instance, electronic conduction in polymers, such as polyvinylcarbazole, is essential to some xerographic 
processes.  The chemical complexity of these systems puts a premium on understanding the fundamental 
physics in new ways that do not usually rely on the simple symmetries present in elemental materials.  All 
of these systems exhibit electronic phase transitions as the chemical composition or doping is changed: 
their electronic states change qualitatively.  Sometimes this transition is from being an insulator to a metal, 
sometimes from a metal to a superconductor or to some complex magnetically ordered structure. 

One of the simplest electronic phase transitions is the transition between extended and localized states 
of a single electron moving in a random potential.  Even though this problem is at the heart of the study 
of the electronic properties of any disordered material, the traditional methods of simply combining rough 
semiquantitative theories and experiment have been insufficiently powerful to resolve all of the important 
issues.  One reason is that real materials have many physical influences in addition to disorder, such as 
interactions of vibrations and interactions between different electrons in the same material.  Some 
mathematical work, such as rigorous theorems related to one-dimensional Anderson localization, has 
already helped in understanding this problem.  On the other hand, loopholes in these theorems have been 
uncovered when the disorder is of a special, correlated kind.  For instance, certain 1-D systems do not 
have only localized states as the simple theorems had indicated.  These unusual sorts of extended states 
arise in systems with certain kinds of correlated disorder or with quasi-periodic Hamiltonians. 

Interestingly, far from being a mathematical curiosity, these exceptions to the simple theorems about 
one-dimensional localization seem to be at the heart of understanding the behavior of materials such as 
polyacetylene.   In two- or three-dimensional materials, experiment has amply demonstrated the existence 
of both extended and localized states.  However, there are still numerous controversies about the 
applicability of simple phase transition ideas to these electronic phase transitions.  Are they described by 
the usual scaling phenomenology of ordinary thermal phase transitions? 

It has been argued that, in fact, such descriptions may break down because the wavefunctions at the 
transition are multifractal.  Thus, the study of these electronic phase transitions has much in common with 
problems addressed in quantum chaos, where the structure of the wavefunctions needs to be understood in 
a statistical way.  The interacting electron systems and their phase transitions also carry mathematical 
challenges.  In one dimension, the interactions between electrons again can cause them to behave as if 
they were insulating.  These one-dimensional many-electron problems lead to exactly solvable Schrödinger 
equations.  The exact integrability of these classical models is connected with conformal invariance and 
the existence of solitons of nonlinear partial differential equations in one dimension.  The question of 
whether such electronic interaction effects give rise to new phases for higher-dimensional systems 
doubtless has connections with the problem of solitons and exact integrable systems in higher dimensions— 
a problem that has attracted many in the area of partial differential equations. 

Finally, a large number of interesting phase transitions occur in disordered systems that also have 
interactions.  These include the Kondo effect in which isolated electronic sites behave as if they have spins 
that can be quenched, as well as the exotic spin glass phases that have proved useful at least as analogies 
in many other areas of chemistry and biology. At the moment, the most useful theory of these system is 
based largely on the use of the unrestricted Hartree-Fock approximation.  There are numerous 
mathematical questions connected with the Hartree-Fock problem for such disordered systems.  Many of 
the ideas invented by Lieb in his proof of the stability of matter may have practical use here.  Again, the 
rigorous mathematical analysis can be of significant help in understanding whether or not certain 
approximations can be used confidently in elucidating the qualitative physics.  In addition, the same issues 
will arise when quantitative calculations are contemplated for specific materials. 

The study of electronic phase transitions in clusters will make these issues even more pronounced. 
The usual theory of phase transitions concentrates on infinite systems, and only dominant therraodynamic 
contributions are computed.  For clusters, the finite size effects and the asymptotics of the approach to the 
infinite limit become important mathematical problems. 
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methods for systems of 20 to 30 atoms (the traditional ab initio approach) requires 104 to 106 more 
computations than the semi-empirical or empirical approaches and much more time than it takes to 
solve the classical equations of motion for the rest of the system (Singh and Kollman, 1986). 

To elaborate, calculation of the free energy of a complex chemical system by using classical 
molecular dynamics (Kollman, 1993) requires one to calculate the energy of the system and its 
gradient with respect to all the 3N coordinates.  This can be done for noncovalent processes (those 
using only Equation 10) quite efficiently because the energy function in Equation (10) is very simple 
and its derivatives are quick and easy to evaluate.  When one adds quantum mechanical (bond making 
or breaking) effects via Equation (1), in order to make the calculation of the free energy tractable, 
one must be able to evaluate the quantum mechanical energy and its gradient for the few quantum 
mechanical atoms as rapidly as the classical molecular mechanical energy and gradient for the 
thousands of atoms in the remainder of the system.  This can be done by using simpler empirical 
(Warshel, 1991) and, to a reasonable approximation, semi-empirical (Field et al., 1990) quantum 
mechanical methods, but not with the first principle ab initio methods. 

Density functional methods (Labanowski and Andzelm, 1991), particularly the divide-and-conquer 
strategy (Yang, 1991), show promise in leading to accurate and rapid solutions of Equation (9) for the 
electronic structure, but they are still a long way from being fully developed, so one cannot tell how 
efficient and useful they will be in this regard. 

Thus, accurate simulation of chemical reactions at the active sites of macromolecules will likely 
require significant progress in the conformational search problem, even if one considers only the 
active site of the enzyme.  As should be emphasized, the "conformational search problem" requires 
one not only to consider many conformations, but also to rank their relative free energy in solution. 
On top of this, one places the problem of accurate and very rapid electronic structure calculations. 
The above problems are very challenging conceptually, practically, and computationally. 
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Molecular Dynamics Algorithms 

Enhanced Sampling 
The multiple minima problem, discussed elsewhere in this report, can be addressed by approaches 

other than optimization.  Specifically, reasonable sampling strategies can be devised to scan 
configuration space in the hope of obtaining information about many local minima, maxima, and 
saddlepoints.  Moreover, these strategies can incorporate a variety of chemical information, such as 
interproton distances from NMR, van der Waals radii (for hard-core exclusion), and 
secondary-structure elements.   Useful search strategies today involve Monte Carlo, molecular 
dynamics (MD), Brownian and Langevin dynamics, calculations of free-energy perturbations, 
high-temperature simulations, normal-mode analyses, and various enhanced sampling techniques that 
involve hybrids of all of the above.  As reflected by those many approaches, the problem of 
inadequate sampling of configurational space is receiving increasing attention as a realization emerges 
that faster and more powerful computers alone cannot solve this problem in the near future.  New 
methodologies and a hierarchy of approaches at different levels of resolution—in combination with 
experiment—are needed to attack this sampling problem to advance current capabilities of 
computational chemistry in connection with biomolecules. 

A specific problem involves numerical integration in the context of MD simulations.  In this 
technique, molecular motion is propagated by numerically integrating the classical equations of motion 
governing a molecular system under the influence of a specified force field (McCammon and Harvey, 
1987; Allen and Tildesley, 1990).  In theory, MD simulations can provide extensive spatial and 
temporal information.  However, inadequate sampling limits the scope of the results that can be 
obtained in practice.  Similar issues arise in other chemical applications, such as quantum mechanics, 
and the development of improved integration schemes will advance the systems and types of processes 
that can be simulated on modern computers. 

Numerical Methods for Solving Ordinary Differential Equations 
Many problems in chemistry can be reduced to the solution of systems of coupled ordinary 

differential equations (ODEs).  Examples include classical and Langevin dynamics, rate equations of 
kinetic theory, and the time-dependent Schrödinger equation when expanded in a basis set.  Thus, 
numerical integrators used to solve these equations are fundamental tools in computational/theoretical 
chemistry, and any significant improvement in these integrators (e.g., speedup, long-time stability) 
results in advances throughout the field. 

The technology of numerical integrators for solving ODEs has a long history with significant 
interplay among mathematics, physics, and chemistry.  Many of the earliest integrators, such as 
Runge-Kutta and predictor-corrector integrators, are still in common use, but there have also been 
recent advances, driven in part by the need for methods that can treat multiple time scales and have 
greater stability for large-scale coupled nonlinear oscillators commonly found in MD of polymers and 
biological macromolecules.   The long-time stability of integrators for such systems is a challenging 
area of mathematical analysis research; perhaps the chemical applications described here will stimulate 
important developments. 

Symplectic Integrators 
Symplectic integrators have recently gained attention in the mathematical community and were 

quickly adapted for use in dynamics calculations in chemistry because of their favorable properties. 
In applications to Hamiltonian systems, symplectic integrators have the property of building in 
Liouville's theorem, whereby areas in phase space are preserved as the system evolves in time.  This 
strong conservation property translates into stability over long-time integrations, an important 
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property in MD calculations involving millions      ^^^^^^mmmm 

and more steps.   One consequence of this for A sympiectic integrator is any of a class of 
constant-energy MD simulations is that except numerical algorithms for the integration of 
for fluctuations, sympiectic integrators with classical many-body equations of motion that 
small time steps conserve energy for very long possess favorable properties such as area 
times, whereas nonsymplectic integrators preservation, energy conservation, and time 
typically introduce a systematic drift in the total reversibility. 
energy.  Time reversibility is another useful ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
practical property of sympiectic integrators. 

Symplecticness may also be used in 
determining numerical solutions to the Schrödinger equation.  There is an equivalent representation of 
quantum mechanics in terms of Hamilton's equations (Gray and Verosky, 1994) that makes possible 
the use of integrators for the quantum dynamics studies that are used for classical dynamics. 
Area-preserving mapping are also of interest in their own right in studies of dynamical systems 
(Meiss, 1992). 

Sympiectic integrators may be implicit or explicit.  In explicit methods, the solution at the end of 
the time step is obtained by performing operations on the variables at the beginning of each time step. 
Symbolically, we write yn+1 — f(y", At, ...), where/is some nonlinear function, At is the time step, 
y" is the approximation to the solution y at time nAt, and the dots indicate other parameters or 
previous solutions (e.g., yn'\ y"'2).  With implicit integrators, the final solutions are functions of both 
the initial and the final variables (yn+1 = flyn+],yn, At, ...)), and so coupled nonlinear equations must 
generally be solved at each time step to propagate the trajectory.  The explicit versions generally 
involve simple algorithms that (for propagation only) use modest memory, while implicit methods 
involve more complex algorithms but are often more powerful for treating systems with disparate time 
scale dynamics, as discussed below. 

The development of sympiectic integrators has involved significant interplay among 
mathematicians, physicists, and chemists.  Seminal work on sympiectic integrators was done by both 
physicists and mathematicians (Ruth, 1983; Feng, 1986; Candy and Rozmus, 1991; McLachlan and 
Atela, 1992; Okunbor and Skeel, 1992; Calvo and Sanz-Serna, 1993) based on second- and 
third-order explicit approaches and Runge-Kutta methods.  Implicit approaches were developed in 
parallel (Channell and Scovel, 1990; De Frutos and Sanz-Serna, 1992).  Recently, these ideas have 
found their way into the chemistry community (Gray et al., 1994) with promising results.  The Verlet 
integrator (Verlet, 1967), already in common use, was found to be sympiectic, thereby explaining the 
good associated stability observed in practice.  However, sympiectic integrators that improve on 
previously available methods have also been developed (Gray et al., 1994).  Initial applications using 
these methods suggest that they may become favored for simulations of polymer dynamics and related 
problems with small time steps. 

The Time Step Problem in Molecular Dynamics 
Although standard explicit schemes, such as the Verlet and related methods, are simple to 

formulate and fast to propagate, they impose a severe constraint on the maximum time step possible. 
Instability—uncontrollable growth of coordinates and velocities—occurs for step sizes much larger 
than 1 femtosecond (1015 second).  This step size is determined by the period associated with high- 
frequency modes present in all macromolecules, and it contrasts with the much longer time scales (up 
to 102 seconds) that govern key conformational changes (e.g., folding) in macromolecules.  This 
disparity in time scales urges the development of methods that increase the time step for biomolecular 
simulations.  Even if the stability of the numerical formulation can be ensured, an important issue 
concerning the reliability of the results arises, since vibrational modes in molecular systems are 
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intricately coupled. 
Standard techniques of effectively freezing the fast vibrational modes by a constrained formulation 

(Ryckaert et al., 1977; van Gunsteren and Berendsen, 1977; van Gunsteren, 1980; Miyamoto and 
Kollman, 1992) increase the time step by a small factor such as two, still with added complexity at 
each step.  The multiple time step approaches for updating the slow and fast forces provide additional 
speedup (Streett et al., 1978; Grubmüller et al., 1991; Tuckerman and Berne, 1992; Watanabe and 
Karplus, 1993), although some stability issues are also involved (Biesiadecki and Skeel, 1993). 

Implicit Integration Schemes 
There are well-known numerical techniques for solving differential equations describing physical 

processes with multiple time scales (Gear, 1971; Dahlquist and Björck, 1974).  Various implicit 
formulations are available that balance stability, accuracy, and complexity.  However, the standard 
implicit techniques used by numerical analysts (Kreiss, 1991) have not been directly applicable to MD 
simulations of macromolecules, for the following reasons. 

First, such implicit schemes are often designed to suppress the rapidly decaying component of the 
motion.  This is a valid approach when the contribution of these components becomes negligible for 
sufficiently long times, as is the case for the second term in y(t) = exp (-t) + exp (-100?). 
However, this situation does not hold for biomolecular systems because of the intricate vibrational 
coupling.  It is well recognized that concerted conformational transitions (e.g., in hinge-bending 
proteins) require a cooperative mechanism driven by small-scale fluctuations to make possible a 
large-scale collective displacement.  Thus, although the absence of the positional fluctuations 
associated with these high-frequency modes may not by itself be a severe problem, the absence of the 
energies associated with these modes may be undesirable for proteins and nucleic acids, since 
cooperative motions among the correlated vibrational modes may rely on energy transfer from these 
high-frequency modes. 

Second, implicit schemes with known high stability (e.g., implicit Euler) can introduce numerical 
damping (Zhang and Schlick, 1993).  This has prompted the application of such implicit schemes to 
the Langevin dynamics formulation, which involves frictional and Gaussian random forces in addition 
to the systematic force to mimic molecular collisions and therefore a thermal reservoir.  This 
stabilizes implicit discretizations and can be used to quench high-frequency vibrational modes (Peskin 
and Schlick, 1989; Schlick and Peskin, 1989), but unphysical increased rigidity can result (Zhang and 
Schlick, 1993).  Therefore, more rigorous approaches are required to resolve the subdynamics 
correctly, such as by combining normal-mode techniques with implicit integration (Zhang and 
Schlick, 1994); significant linear algebra work in the spectral decomposition is necessary for 
feasibility for macromolecular systems.  For example, banded structures for the Hessian 
approximation (see related discussion in the section on multivariate minimization beginning on page 
68) can be exploited in the linearized equations of motion.  There has also been some work on 
implicit schemes that do not have inherent damping, but preliminary experience suggests that for 
nonlinear systems, desirable energy conservation properties can be obtained only up to moderate time 
steps (Simo et al., 1992; Zhang and Schlick, 1995).  In particular, serious resonance problems have 
been noted (Mandziuk and Schlick, 1995). 

Third, implicit schemes for multiple time scale problems increase complexity, since they involve 
solution of a nonlinear system or minimization of a nonlinear function at each time step.  Therefore, 
very efficient implementations of these additional computations are necessary, and even then, 
computational gain (with respect to standard "brute-force" integrations at small time steps) can be 
realized only at very large time steps. 
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Future Prospects 
The preceding subsections have described several recent accomplishments in the development of 

integration methods in MD simulations and have also outlined several important challenges for the 
future.  What makes these integration problems particularly challenging is the fact that solutions 
demand much more than straightforward application of standard mathematical techniques.  At this 
point it appears that the optimal algorithms for MD will require a combination of methods and 
strategies discussed above, including symplectic and implicit numerical integration schemes that have 
minimal intrinsic damping, and correct resolution of the subdynamics of the system by some other 
technique (e.g., normal-mode analysis).  Undoubtedly, high-performance implementations will make 
possible a gain of several orders of magnitude in the simulation times, and there are certainly 
additional gains to be achieved by clever programming strategies. 
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N- and V-Representability Problems in Classical Statistical Mechanics 

Classical equilibrium statistical mechanics presents a class of unsolved N-representability problems 
analogous to those in the quantum mechanical regime discussed earlier in this chapter.  In this case, N 
refers to the number of particles (atoms or molecules) present, rather than the number of electrons. 
The most straightforward version of this classical problem concerns a single-species monatomic 
system (i.e., spherically symmetric identical particles) and involves the pair correlation function g(r). 
This nonnegative function of interparticle distance r is defined by the occurrence probability of 
particle pairs at r, relative to random expectation.  Consequently, deviations of g{r) greater than 1 
indicate that interparticle interactions have biased the distance distribution to a greater-than-random 
expectation, while deviations less than 1 indicate the opposite. 

For many cases of interest, the interparticle potential energy function V can be regarded as a sum 
of terms arising from each pair of particles present: 

AT-l       N 

y-T    £    v(r,). 
i=l    j = i*l 

The pair potentials v(r) typically are taken to satisfy the following criteria: 

(a) v(r) -» + oo as r -» 0; 

(b) v(r) is bounded, and is piecewise continuous and differentiable for r > 0; 

(c) | v(r) | < Clf (C> 0,n> 3), for r > R > 0. 

Under these circumstances, g(r) plays a special role in the thermodynamic properties of the JV-particle 
system (Hansen and McDonald, 1976). This fundamental quantity appears in closed-form expressions 
giving the pressure and mean energy at the prevailing temperature and density.  Furthermore, it 
appears in expressions for the X-ray and neutron diffraction patterns for the substance; consequently, 
these diffraction measurements constitute an experimental means for measuring g(r) for real 
substances.  It should be added that g(r) is also one of the traditional results reported from computer 
simulations of ,/V-body systems (Ciccotti et al., 1987). 

The experimentally, or computationally, adjustable parameters are temperature; particle number 
density; container size, shape, and boundary conditions; and number N of particles.  For most cases 
of interest, one focuses on the infinite-system limit, where the container size and N diverge, while 
temperature, number density, and container shape are held constant.  The central problem then 
concerns the mapping between the pair of functions v(r) and g(r), where the latter is interpreted as the 
infinite-system limit function. 

Historically, the fundamental theory of classical systems (particularly in the liquid state) 
concentrated heavily on prediction of g(r) for a given v(r), that is, the mapping from v to g.  This has 
generated several well-known approximate integral equation predictive theories for g(r), including 
those conventionally identified in the theoretical chemistry literature by the names Kirkwood (1935), 
Bogoliubov-Born-Green-Yvon (Born and Green, 1949), Percus and Yevick (1958), and hypernetted 
chain (van Leeuwen et al., 1959) integral equations, each of which has spawned successor 
refinements.  However, in all cases the respective approximations invoked have, strictly speaking, 
been uncontrolled.  Consequently, the local structure and thermodynamic property predictions based 
on these various integral equations have had only modest success in describing the dense liquid state, 

59 



BOX 4.2 Tutorial on Statistical Mechanics and the 
Importance of Minima and Saddlepoints in Condensed Matter Systems 

A large part of computational chemistry is concerned with the properties of systems at or near thermal 
equilibrium.  The statistics of configurations at thermal equilibrium therefore dominate many of the questions 
studied by chemists.  The principles of the statistical mechanics of equilibrium systems are quite simple to 
state but are profound and sometimes surprising in their results. 

A fundamental postulate of equilibrium statistical mechanics is that in the long run, all states of an 
isolated system that are consistent with conservation of energy will be observed with equal probability.  The 
thermodynamic quantity 5, the entropy, is simply a measure of the number Ü of these equally probable states 
that the system might access, S = kB log fi.  Here kB is Boltzmann's constant.  Thus, combinatorial and 
various counting problems play a special role in our thinking about the thermodynamics of chemical systems. 
Although each of the states of an isolated system is equally probable, this is not the case when we consider 
only a part of a system.  When only part of a system is being examined, we must ask the question, How 
many states of the entire system are accessible when a subsystem is in a given configuration?  The answer is 
given by 

Q(X) = e
S(m*, 

where X refers to the specified subsystem and the entropy refers to the subsystem's environment. 
A very interesting and powerful special case of this formula is used constantly in equilibrium statistical 

mechanics.  If the subsystem considered is only weakly coupled to the rest of a much larger system, we can 
decompose the total energy of the entire system into parts: 

ETOT = E{X) + Eenvjrmmenl . 

The energetic coupling is small and can be neglected if we are considering a system that is itself fairly large 
and therefore has a relatively small surface of interaction with the remainder of the system. In this case the 
counting problem can be solved since we know that the entropy of the environment is a smooth function of 
its total energy.  This then gives a count of states expressed by 

0(X) = exp [j-S(ET0T - E(X))] = &xp[±(SETOT - E(X)^\E   ]. 
kB kg oE   TOT 

The probability then of an exactly specified state of a subsystem that is part of a larger one is proportional to 
this number of states.   It is given by the Boltzmann distribution law 

POO = ie-£w 

The temperature entering here is the thermodynamic derivative of the entropy and is proportional to the 
average kinetic energy of each particle in the system.  This distribution law contains within it many of the 
great phenomena of chemistry and physics.  First we see that the most important states are those that have 
the lowest energy.  If the energy then is a continuous function of the coordinates of part of the system, the 
most probable configurations are those that give the minima of this potential.  Indeed, the coefficient l/kBT in 
the Boltzmann distribution law ensures that at the lowest temperatures only the deepest or global minima are 
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important.  Chemistry is usually a low-temperature phenomenon-most chemical reactions are studied around 
room temperature, although, of course, many do occur under greater extremes of conditions-and room 
temperature corresponds to only one-fortieth of the typical energy scale of chemical bonds.  Thus, the 
Boltzmann distribution law tells us that chemistry will mostly concern itself with the specific configurations 
that minimize the energy. 

Of course, if molecular systems remained entirely at their energy minima, little would go on. 
Occasionally, a molecular system must make a transition between one minimum on the energy surface and 
another.  To do this, the system must occasionally find itself in an intermediate high-energy configuration, 
which the Boltzmann distribution law tells us is rather improbable.  If we ask which of the relatively 
improbable intermediate states between two minima are the most probable, it is clear that these should 
correspond to saddlepoints of the energy.  These saddlepoint configurations are known as transition states to 
chemists.  The probability of a system being found at a transition state determines the rate of a chemical 
transformation. We see, therefore, that the geometry of minima and saddlepoints of potential energy surfaces 
is extremely important in determining the chemical properties of a molecular system. 

Sometimes only certain aspects of a system are considered explicitly.  For example, when we study the 
shapes, structures, and motions of a biological molecule (e.g., a protein immersed in water), we are 
interested only secondarily in the configurations of the water molecules around this macromolecule. 

A special case of these geometrical problems arises when the subsystem being considered is itself rather 
large and involves strong interactions between its molecular subunits.  In this case, it sometimes happens that 
the minimum-energy saddlepoint actually possesses an extremely high energy.  We then say that the 
transformation between two minima has a large barrier and the transformation will be extremely slow. 
Sometimes as the subsystem studied grows larger and larger, the transformation barrier itself also grows 
larger and larger.  Thus, for a macroscopic system, certain transformations may actually take place 
effectively only on infinite time scales.  We can then treat each part of the configuration space very nearly as 
separate regions.  This situation arises when a phase transition occurs.  The theory of phase transitions is 
then concerned with the problem of how a many-dimensional configurational space gets fragmented into parts 
that are separated by very high energy barriers. 

The Boltzmann distribution law applies only to a completely specified subsystem that is interacting weakly 
with its environment.  The biological macromolecule is interacting strongly with its solvent environment, and 
so the Boltzmann distribution law using the energy alone is inappropriate for describing its configurations. 
On the other hand, for different configurations of the biomolecule, we can in principle compute the number 
of configurations of the surrounding solvent that are compatible with that configuration of the biomolecule. 
Thus, the probability of a particular configuration of the biomolecule would have the form 

PCX) = exp[SeJX)lkB]exp[-E(X)l(kBT)] = exp[-F(X)/(^7)l, 

where the probability has been rewritten in a Boltzmann-like form in which the energy of the molecular 
system is combined with the entropy in its environment to form a free energy F(x) = £(X) - TS(X), which 
gives the probability of the subsystem's configuration.  For this reason, the geometry of free energy surfaces 
is often also of great interest to chemists and physicists. 

Occasionally the distinction between energies and free energies is blurred in offhand writing by chemists 
and physicists, and the uninitiated reader must be careful about these distinctions when applications are made. 
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they have failed to predict the so-called nonclassical singular behavior at the liquid-vapor critical point 
(Widom, 1965), and they have been largely useless for the study of freezing and melting transitions. 
Perhaps as a result of these shortcomings, the recent trend in classical statistical mechanics has been 
to rely heavily on direct computer simulation of condensed-phase phenomena.  Because these 
simulations often require massive computational resources, a case can be made that revival of analytic 
predictive theory for g(r) would be favorable from the point of view of the "productivity issue" in 
theoretical and computational chemistry. 

In some respects, the inverse mapping of g to v is even more subtle, intriguing, and 
mathematically challenging.  At the outset, one encounters the obvious matter of defining the space of 
functions g(r) that in fact can be generated by a pairwise additive potential energy function V.  A few 
necessary conditions are straightforward; as already remarked, g(r) cannot be negative.  It is generally 
accepted (but not rigorously demonstrated) that g must approach unity as r diverges if the temperature 
is positive, even though the system itself may be in a spatially periodic crystalline state.  In addition, 
the Fourier transform of g(r) — 1, 

G(k) = j exp(ifc-r) \g{r)-\]dr, 

is also subject to necessary conditions stemming from the nature of the linear equilibrium response of 
the system to weak external perturbations: for all k > 0 one must have (Percus, 1964) 

1 + pG(k) £ 0        (p = number density). 

These generic conditions can be supplemented by others that are necessary if v(r) has an infinitely 
repelling hard core, that is, 

v(r) = +oo for 0 < r < a, 
v(r) = bounded for a < r. 

This hard-core property prevents neighbors from clustering too densely around any given particle, and 
from the geometry of hard-sphere close packings it is possible to bound the integral of i^gir) over 
finite intervals of r. 

A primary challenge concerns formulation of sufficient conditions on g(r), given that V possesses 
the pairwise-additive form displayed above.  At present we have no rational criterion for deciding 
whether a given g(r), however "reasonable" it may appear to be by conventional physical standards, 
corresponds to the thermal-equilibrium short-range order for any pairwise additive V.  It is not even 
clear at present how to construct a counterexample, namely, a g(r) meeting the necessary conditions 
above that cannot map to a v(r) of the class described.  In any case, formulation of sufficient 
conditions would likely improve prospects for more satisfactory integral equation (or other analytical) 
predictive techniques for g(r). 

Several directions of generalization exist for this classical V-representability problem; these include 
the following matters: 

1. Properties of triplet and higher-order correlation functions g" for occurrence probabilities of 
particle «-tuples; 

2. Properties of correlation functions for particles (molecules) with internal degrees of freedom 
(rotation, vibration, conformational flexibility); 

3. Effects of specific nonadditive potentials, which would be the case when including 
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three-particle contributions in V; and, 
4.  Multicomponent (several species, or mixture) systems, in particular the important case of 

electrostatically charged particles (ions) with their long-ranged Coulombic interactions. 
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Implications of Topological Phases 

The Born-Oppenheimer approximation dates from the 1920s, and the entire notion of molecular 
structure can be based upon it.  It is thus a surprise that significant qualitative physics has been 
ignored by most chemical physicists in applying the Born-Oppenheimer approximation to systems with 
degenerate electronic states.  The basic idea behind the Born-Oppenheimer approximation is that 
nuclei move much more slowly than electrons.  Thus, the Schrödinger equation for electrons can be 
solved at fixed nuclear configuration and the resulting energy can be used as a potential for studying 
the motions of the nuclei themselves. 

Generally, when nuclear motion itself is quantized, one assumes the usual Schrödinger equation 
with a classical scalar potential for the nuclear motions.  This has proved valid for systems that do not 
have significant electronic degeneracy.  A serious mathematical problem is the uniqueness of the wave 
function for the nuclei.  The Born-Oppenheimer approximation really assumes a single path for the 
slowly moving nuclei.  If there is an electronic degeneracy, topologically distinct paths may connect 
two different positions on the same electronic surface.  Thus, in addition to the phases that one 
develops for the quantum dynamics through the simple scalar potential dynamics, there is an 
additional topological phase.  The existence of this topological phase, which depends on the path 
between two points, has been known since at least the 1950s, when Longuet-Higgins studied it in the 
context of Jahn-Teller distortions.  Only in recent years has its significance been truly appreciated, 
however.  One of the leaders in bringing out the significance of topology in quantum molecular 
dynamics was M. Berry.  However, it was appreciated somewhat earlier by Truhlar and Mead that 
this topological phase plays a role in chemical reactions.  Indeed it is important even in the most 
fundamental of chemical reaction problems, the H + H2 reaction.  Very recently, the discrepancy 
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BOX 4.3 Implications of Dynamic Chaos for Quantum Mechanical Systems 

Many phenomena in chemistry are at the border of applicability of classical mechanics.  Quantum 
mechanical phenomena, such as tunneling and interference, certainly are relevant to many chemical 
reactions.  Thus, in addition to purely classical dynamical methods, semiclassical approximations are used 
quite commonly in chemical physics. 

Semiclassical methods work fairly well for low-dimensional systems such as those encountered in gas- 
phase chemical reactions, because the collisions that act as randomizers are infrequent and the chaotic 
character of the processes may often be neglected.  On the other hand, in attempting to extend 
semiclassical methods to condensed-phase systems, one is immediately faced with the problem of the 
underlying classical chaos.  No completely adequate semiclassical quantization of chaotic systems yet 
exists. 

Most of the effort of theoretical chemists working in this area has been devoted to understanding 
simple themes that may give some qualitative insight to phenomena that occur in the quantum mechanics 
of systems that are classically chaotic.  Several important themes have been developed, one of the most 
notable being the connection of quantum chaos to random matrix theory.  The notions behind this have 
their roots in Wigner's use of random matrices to describe nuclear systems, but the application of these 
ideas to molecules has been equally rewarding.  One can examine the evolution of the energy levels of a 
system under perturbation in order to understand its quantum chaotic nature.   It has been shown that a 
random matrix description could arise from multiple level crossings.  This approach has also been shown 
to be related to some exactly integrable systems of particles moving in one dimension.  The great irony is 
that the random matrix description arises from a problem that, in another guise, leads to exactly integrable 
equations. 

Very interesting connections exist to the theory of solutions of nonlinear partial differential equations. 
Classical systems in many dimensions, when they are chaotic, often exhibit diffusive dynamics.  Arnold 
has shown how weakly coupled systems of dimension higher than 2 exhibit such diffusion.   It has recently 
been argued that a phenomenon analogous to Arnold diffusion in the classical limit arises in quantum 
problems and that weakly coupled systems of quantized oscillators are analogous to local random matrix 
models.  These local random matrix models are closely tied to the problem of Anderson localization, 
which concerns itself with the nature of eigenfunctions of random differential operators. 

A most enticing development in the understanding of quantum chaos has been the connection of 
problems in quantum chaos with deep problems in number theory.  One of the most picturesque 
approaches for obtaining quantum mechanical energy levels is to calculate the Green's function of the 
Schrödinger equation through a sum over classical paths.  For chaotic systems these classical paths are 
extremely numerous and the Green's function is indeed the sum of a statistically fluctuating quantity that 
itself presents interesting mathematical problems to be discussed later. 

One model for the classical paths represents them as repetitions of some fundamental periodic orbits. 
Some very simple special models of the actions of these orbits lead to a Green's function that is closely 
tied to the Riemann zeta function.  The prime numbers represent the fundamental periodic orbits.  This 
has suggested that the zeros of the Riemann zeta function are related to the quantum mechanical 
eigenvalues of some Hamiltonian that is classically chaotic.  This ansatz has led to interesting predictions 
about the spacing of zeros of the Riemann zeta function and other statistics that seem very much in 
keeping with the random matrix theories being used to describe quantum chaos.  Thus, it seems that 
problems in quantum chaos might be clarified considerably by considerations from probabilistic number 
theory and, conversely, that deep number theoretic questions might be addressed by using ideas from the 
quantum mechanics of chaotic systems.  Although significant progress has already been made in 
developing conjectures based on these ideas, there is still a tremendous amount to do and many deep 
mysteries remain. 
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between experimental results for H + H2 and large-scale computations of the scattering cross sections 
was shown to arise from neglect of this topological phase. 

For problems with small amounts of degeneracy, the topological phase is easy to handle with little 
mathematical sophistication.  Either a trajectory encircles a conical intersection (of Born-Oppenheimer 
energy surfaces) or it does not, leading to two values of the phase.  This encircling of singularities 
can be described by using the idea of a gauge potential.  With higher degeneracies, however, very 
difficult topological problems may be encountered since many surfaces can make avoided crossings in 
many locations.  The paradigm of such complicated topology problems may well be metal clusters. 
For metals in the thermodynamic limit, there are numerous energy levels corresponding to the 
excitation of electrons just below the Fermi sea to just above it.  Since the electronic levels are highly 
delocalized, these energy changes are quite small and the energy surfaces are close together.  The 
actual dynamics of the nuclei must involve the coupling of several surfaces.  There are many possible 
interchanges of the metallic ionic cores, and complicated topologies can result. 

Another place in which topology enters is when an underlying approximate wave function is built 
up out of many degenerate electronic wave functions and the dynamics of electronic excitations is 
studied.  The paradigm for this is the recent interest in resonating valence bond descriptions of 
metallic and superconducting materials.  Here, reorganization of the different valence bond structures 
as an excited electron or hole moves around gives rise to topological phases and gauge fields.  It has 
been argued that these effects are at the heart of the new high-temperature superconductors and 
represent a real breakdown of the traditional band structure picture of metals.  Most models studied 
by physicists, however, have been very simple, and it will be necessary to understand how the 
topological phases arise in completely realistic electronic structure calculations if one is to make 
predictions of new high-temperature superconductors on the basis of these ideas. 

Theoretical and Computational Chemistry in Spaces of Noninteger Dimension 

A major mathematical landmark in the eighteenth century was Euler's introduction and exploitation 
of the famous gamma function.  One of its basic and striking properties is that it provides a natural 
"smooth" extension of the factorials n\ that are defined nominally just for the positive integers to all 
positive numbers, and indeed even into the complex plane.  The pervasive appearance of the Euler 
gamma function throughout classical mathematical analysis constitutes a powerful paradigm suggesting 
that analogous extensions from the discrete positive integers to the complex plane in other contexts 
might generate analogous intellectual benefits. 

During roughly the last two decades, simultaneous developments in several distinct areas of 
physical science appear to point to the necessity (or at least the desirability) of just such an extension. 
Specifically, this involves generalizing the familiar notion of Euclidean D-dimensional spaces from 
positive integer D at least to the positive reals, if not to the complex £>-plane.  This is not an empty 
pedantic exercise; at least one serious proposal has been published (Zeilinger and Svozil, 1985) 
claiming that accurate spectroscopic measurements of the electron "g-factor" indicate that the space 
dimension of our world is less than 3 by approximately 5 x 10"7.  Furthermore, in various theoretical 
applications that have so far been suggested for the continuous-D concept, D itself or its inverse 
appears to be a natural expansion parameter for various fundamental quantities of interest.  However, 
most of the work along these lines thus far has been ad hoc, lacking rigorous mathematical 
underpinning.  Naturally this calls into question the validity of claimed results. 

Three physical science research areas deserve mention in this context.  The first is quantum field 
theory; dimension D has been treated as a continuously variable "regularizing parameter" whose 
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manipulation avoids embarrassing divergences in perturbation expansions (Bollini and Giambiagi, 
1972; t'Hooft and Veltman, 1972; Ashmore, 1973).  The second is the statistical mechanics of phase 
transitions (specifically involving critical point phenomena); because of rigorously known results for 
D = 2 and D = 4, 5, 6, . . . , series expansions in the quantity 4-D have been developed for 
various quantities of interest to access the physical case D = 3 (Wilson and Fisher, 1972; Gorishny et 
al., 1984).  The third area holds perhaps the greatest promise for chemical progress, namely, the 
development of atomic and molecular quantum mechanics (with useful computational algorithms) in 
spaces of arbitrary D (Goodson et al., 1992; Herschbach et al., 1992). 

As in the other applications, the notion of atomic and molecular quantum mechanics is 
unambiguously defined for D a positive integer; in other words, the Schrödinger wave equation and 

BOX 4.4 Nodal Properties of Wavefunctions 

Knowledge of the nodes of the many-fermion wavefunction would make possible exact calculation of 
the properties of fermion systems by Monte Carlo methods.  Little is known about nodes of many-body 
fermion systems even though the one-dimensional case is ubiquitous in textbooks on quantum mechanics. 
The nodes referred to here are the nodes of the exact many-body wavefunction and are very different from 
the nodes of orbitals. 

In the absence of a rigorous simulation method for fermion systems, the fixed-node approximation has 
been found to be a useful and powerful approach.  One assumes knowledge of where the exact 
wavefunction is positive and negative based on the nodes of a trial wavefunction.  The Schrödinger 
equation in imaginary time is solved by simulating the diffusion process with branching within the regions 
bounded by the assumed nodes. 

For the ground state, Ceperley (1991) has proved that ground state nodal cells have the tiling property 
(i.e., there is only one type of nodal cell, all other cells being related by permutational symmetry).  The 
tiling property is the generalization to fermions of the theorem that a bosonic ground state is nodeless. 

The nodal hypervolumes of a series of atomic JV-body Hartree-Fock level electronic wavefunctions 
have been mapped by using a Monte Carlo simulation in SN-dimensional configuration space (Glauser et 
al., 1992).  The basic structural elements of the domain of atomic and molecular wavefunctions have been 
identified as nodal regions and permutational cells (identical building blocks).  The results of this study on 
lithium-carbon indicate that Hartree-Fock wavefunctions generally consist of four equivalent nodal regions 
(two positive and two negative), each constructed from one or more permutational cells. 

A generalization of the fixed-node method has been proposed that could solve the fermion problem at 
finite temperature if only the nodes of the fermion density matrix were known (Ceperley, 1991). 

References 
Ceperley, D.M., 1991, J. Stat. Phys. 63:1237. 

Glauser, W.A., W.R. Brown, W.A. Lester, Jr., D. Bressanini, B.L. Hammond, and M.L. Koszykowski, 
1992, J. Chem. Phys. 97:9200. 

its boundary conditions have an immediate and clear meaning.  The desire to embed these problems 
in the arbitrary-D context arises primarily from the observation that solutions to the Schrödinger 
equation adopt a simple limiting form as D approaches infinity, namely, those for simple harmonic 
oscillators localized in multidimensional space (Goodson et al., 1992; Herschbach et al., 1992). 
Eigenfunction and eigenvalue expansions in \ID have then been formally generated, with the hope 
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that series summation techniques (e.g., Pade approximants) would permit extension to the case of 
ultimate interest D = 3.  This strategic approach to real chemistry in the real world is emboldened by 
the facts that (a) D = 1 is often an exactly solvable case (or at least amenable to very accurate 
numerical study), and (b) exact interdimensional identities for D and D + 2 are known (Herrick, 
1975).  These latter afford convenient fixed points for refining the series summation attempts. 

The presumption that spaces with noninteger dimension were available as analytic tools for atomic 
and molecular quantum mechanics rests largely on simple observations such as the fact that the D- 
dimensional (hyper)spherical volume element, 

dV(D)/dr = KiDy^-V 

K(D) = 27t(0/2)/r(D/2), 

is an obvious analytic function of the variable D.  The implicit assumption in the various applications 
to date, quantum mechanical and otherwise, seems to have been that the same expression can be 
invested with mathematical legitimacy for noninteger D, in the sense that it is an attribute of a family 
of precisely defined spaces.  This is by no means an obvious proposition, since any quantity such as 
K(D) above could be augmented by any function of D that vanishes at the positive integers, such as 
sin (2irD), without affecting the situation for conventional Euclidean geometry. 

The published literature reveals some attempts to axiomatize spaces of noninteger dimension 
(Wilson, 1973; Stillinger, 1977), but it is clear that the subject requires deeper mathematical insight 
than it has thus far experienced.  In particular, it is desirable to determine the extent to which 
arbitrary-D spaces are uniquely definable as uniform and isotropic metric spaces and what their 
relation to conventional vector spaces might be.  It has been suggested (Wilson, 1973) that 
noninteger-D spaces can be viewed as embedded in an infinite-dimensional vector space, but whether 
this is uniquely possible or even necessary to perform calculations remains open. 

It is important to stress the distinction between the general-D spaces that may be obtained by 
interpolation between the familiar Euclidian spaces for integer D on the one hand and the so-called 
fractal sets to which a generally noninteger Hausdorff-Besicovitch dimension can be assigned 
(Mandelbrot, 1983).  The latter are normally viewed as point sets contained in a Euclidean host 
space; furthermore, they fail to display translational and rotational invariance, and are therefore not 
uniform and isotropic. 
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Multivariate Minimization in Computational Chemistry 

Introduction 
Mathematical optimization is a branch of mathematics that seeks to answer the question "What is 

best?" for problems in which the quality of the answer can be expressed as a numerical value (see, 
e.g., Gill et al., 1983b; Fletcher, 1987; Ciarlet, 1989).  This question might refer to the "best" 
approximation in some local sense (i.e., a local solution) or to the global solution over the entire 
feasible space (i.e., the global minimum) (see, e.g., Nemhauser et al., 1989; Floudas and Pardalos, 
1991).  A common problem arises when a complex physical system is described by a collection of 
particles, or combinations of states, in a multidimensional phase space.  An energy or cost function is 
associated with each different configuration, and the challenge is to find sets of points that minimize 
(or maximize)1 the objective function.  Such applications arise frequently in molecular modeling, 
rational drug design, quantum mechanical calculations, mathematical biology models, neural 
networks, combinatorial problems, financial investment planning, engineering, electronics, 
meteorology, and computational geometry.  In applications that arise in computational chemistry 
(Scheraga, 1992; Schlick, 1992), the feasible space is often very high in dimensionality and 
complexity, so both local and global minima are of interest. 

There are many optimization techniques available for the computational scientist. Nonetheless, 
implementation of the more sophisticated techniques requires considerable computing experience, 
algorithm familiarity, and intuition.  While software vendors offer a variety of "black-box" codes, 
serious practitioners frequently discover that a good deal of understanding and modification is 
required for successful applications.  Such modifications involve tailoring the algorithm to features of 
the problem at hand—such as function separability—or exploiting available experimental information 
that might guide the optimization path—such as nuclear magnetic resonance (NMR) distance restraints 
in molecular mechanics.  Moreover, successful new optimization schemes may be not be known or 
available to nonspecialist mathematicians, let alone to scientists in allied fields. 

Thus, the transfer of knowledge, its application to real problems, and its further developments will 
greatly benefit from increased interdisciplinary interactions.  In particular, it may be useful to 

'These are equivalent problems.  The minimum of a function/is the maximum of the function -/. 
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stimulate algorithmic developments in optimization toward important scientific problems, such as arise 
in chemistry, that would involve synergistic efforts on both parts: the application-oriented scientist 
and the algorithm developer.  Such collaborations are likely to be fruitful to both parties, since testing 
of new methods will be possible on real-life problems and might generate an evolving body of 
solutions that take into account the available physical data.  There is recent evidence (e.g., in special 
sessions of meetings of the Society for Industrial and Applied Mathematics) that mathematicians have 
discovered the challenges in "mathematical chemistry problems" and protein folding, but many 
frontiers lie ahead. 

Problem Classification 
The available optimization algorithms are classified according to the features of the target problem. 

The objective function to be minimized (or maximized) may be formulated in terms of integer 
variables (discrete optimization), integers in permutations (combinatorial optimization), continuous 
real numbers (continuous optimization), or both continuous real numbers and integers (mixed integer 
optimization).  Examples from these four classes involve, respectively, order planning for 
organizations (the integers may denote, for example, the number of units of each item to be purchased 
monthly for a restaurant); the traveling salesman problem (the ordered list of N integers represents a 
cyclical itinerary for visiting N cities); molecular structure prediction (the real numbers may denote 
nuclear or electronic positions of the particles, or a set of internal variables describing the molecular 
system); and airline crew scheduling (the integers may identify particular flight routes and the real 
numbers may refer to the hours of shift for the flight crew).  For computational chemistry, continuous 
optimization is the most important type of problem. 

In addition to the nature of the control (or independent) variables, the objective function may be 
linear, quadratic, or nonlinear (the latter in varying extent).  The problem may be formulated as 
unconstrained or constrained, with constraints involving equality or inequality conditions, which may 
be linear, quadratic, or nonlinear.  Thus, for the above examples, constrained formulations may 
introduce upper and lower bounds for the Cartesian positions or specified values for certain internal 
variables that should remain fixed; the airline crew scheduling problem will incorporate into the 
optimization formulation the total number of scheduled flights, lower and upper bounds for the 
lengths of shifts, enforced limits on gaps between transatlantic flights, and so on.  In addition to 
functional form and constraints, other important considerations involve the cost of evaluating the 
objective function and the availability (or lack) and associated cost of derivatives.  In some cases, the 
derivatives may be discontinuous, and special techniques may be required.  Derivative information 
can often be exploited significantly for the optimization algorithm, but the benefits must be balanced 
with the additional costs involved. 

The Complexity of Computational Chemistry Problems 
Optimization problems frequently arise in molecular and quantum mechanical calculations in 

chemistry.  These problems are typical of optimization applications seeking favorable configurational 
states of a physical system.  The large-scale nature of these problems together with the lack of 
convexity rules out exhaustive sampling in the feasible space except for very small systems. 
Therefore, clever optimization methods are a necessity, and their improvement translates into the 
ability to model larger physical systems and generate important structural predictions. 

The expense of calculating the function and the associated derivatives also introduces difficulties 
that limit the type of algorithm that may be utilized.  In many molecular mechanics applications, it 
may be tedious but possible to calculate the derivatives; often, the additional computational cost 
involved in computing the gradient is only a small factor more (e.g., 4 to 5) than computing the 
function (and guaranteed by automatic differentiation, which also saves coding efforts; see Box 4.5). 
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Computational intensity often stems from the long-range interactions among the N particles in the 
system (e.g., Coulombic forces).  In molecular mechanics, the direct evaluation requires on the order 
of JV2 operations, and even if a cutoff radius is introduced, computation of the nonbonded terms 
dominates computation time.  Implementation of fast particle methods (Greengard, 1994) in molecular 
mechanics and dynamics calculations (Grubmüller et al., 1991; Board et al., 1992) is clearly 
important for reducing the severity of this problem and allowing more accurate representation of the 

BOX 4.5 Automatic Differentiation 

Automatic differentiation, essentially a new algebraic construct (Rail, 1981; Griewank, 1988; 
Griewank and Corliss, 1991), provides a way to compute exact derivatives of a function whose 
calculation is expressed by a computer program.  This technique may be useful for minimization of 
computational chemistry problems.  Finite-difference techniques have been used for this purpose for 
a long time, but they require judicious choices in the finite-difference interval (Gill et al., 1983a); 
even with optimal choices, errors are inevitable in regions where the gradient is very small or in 
those where function curvature changes very rapidly.   Finite differences also become very expensive 
in large dimensions, unless partial separability is exploited. 

There have been some "computer algebra" approaches based on symbolic computations (e.g., 
packages like Macsyma, Mathematica, or Maple) that can actually handle some differentiation tasks 
when the functional form is specified.  Parenthetically, the reduction in mathematical errors and 
ready availability of graphics due to such symbolic computing tools have enhanced productivity in a 
number of areas of chemistry.   However, while simplifying the programmer's work considerably, 
symbolic programs are not practical to use in the context of large-scale computer programs that 
require repeated evaluation and differentiation of a complex function.  Moreover, this approach 
cannot be applied to full Fortran, C, or C+ + programs directly, only to simplified or special syntax. 

In contrast to finite differences and symbolic algebra, the more recent approach of automatic 
differentiation is based on compiler techniques.  Specifically, compiler transformations are applied to 
compute rigorously the derivative of a function defined by a program.  The basic idea is to use the 
chain rule from calculus to compute the derivative of a composition of functions.  Mathematically, 
this is similar to using symbolic algebra, but the chain rule is applied to the numerical intermediate 
results instead of to the expressions themselves, which makes it much more efficient.  Automatic 
differentiation can be applied to complete programs including common blocks, equivalence 
statements, GOTO statements, and other features beyond the scope of existing symbolic algebra 
systems.  Any code can be viewed as such a composition of elementary functions and algebraic 
operations, with the dependencies of one variable upon another being traced with modern compiler 
techniques.  A code may have conditional branches that depend on the values of the independent 
variable (either explicitly or implicitly).  The differentiation software must generate corresponding 
conditional branches.  Originally, packages were developed for programs written in C and C+ + , but 
recent efforts have extended this to include Fortran programs as well (Bischof et al., 1992). 

Because the derivatives are expressed in exact symbolic form, their calculation is subject only to 
rounding errors.  However, if a function is nondifferentiable at some point, it is not entirely clear 
what the result of automatic differentiation will be; in many cases, it corresponds to the derivative 
computed from one side of the nondifferentiability.   If a function is defined by table-lookup, then the 
derivative returned by automatic differentiation may well be zero.  Some cases of anomalous 
behavior in differentiating specific codes are the subject of ongoing research. 

Significantly, automatic differentiation techniques turn out to be competitive with the finite 
difference approach computationally.  Their application to computational chemistry codes is just 
beginning. 
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long-range interactions; the advantage of such an approach has already been demonstrated in other 
scientific applications (Greengard, 1994), for example in the context of integral equations in 
engineering problems (Nabors et al., 1994). 

The multiple-minimum problem is a severe hurdle in many large-scale optimization applications. 
The state of the art today is such that only for small and reasonable problems do suitable algorithms 
exist for finding all local minima for linear and nonlinear functions. For larger problems, however, 
many trials are generally required to find local 
minima, and finding the global minimum cannot be     ■■■■■i^^^^^^^^^^^^^^^^^^MBM« 
ensured.  These features have prompted research in 
conformational-search techniques independent of, or A molecular configuration is described by a 
in combination with, minimization (Leach, 1991). list of numbers that specifies the relative 
To illustrate, consider a simple model for an alkane Position of the atoms in sPace-  By definition, 

u ■     c •*   /     -j     \    T- u-   *• the configuration is unchanged when the chain of m units (residues).  From combinations or ,    ,6        ,  ,  .     L.
6    ,      ..,,, 

. . .       .    .        .' - , molecule as a whole is subjected to rigid-body 
rough partitions in favorable structures of the motk)n (translation or rotat

J
ion)   ,f the 

individual building blocks, the number of possible mo,ecule consists of N atoms> 3ff _ 6 

starting points produces 3m starting configurations. numbers are required to specify its 
For polypeptides and polynucleotides, the flexibility configuration uniquely.  These numbers may 
of the monomer (building block) configurations consist 0f 3N - 6 Cartesian positions (with 6 
increases, producing a rough range of 10m to 25m values fixed for uniqueness) or some 
reasonable starting points by coarse subdomain combination of bond lengths, bond angles, 
partition (e.g., combinations of typical side chain, and dihedral angles (angles defining the 
main chain, backbone, or sugar dihedral angles). rotation between two groups with respect to 
Exhaustive searches are clearly not feasible. the bond connecting them).  The term 

The buildup technique is a related conformation is typically used by chemists to 
configurational search strategy, used in studies of describf the sPatial configuration of a 

. 7     /TV .   ,    ir,o"-.\     J       i •        A molecular system—strictly speaking, one with proteins (Pmcus et al., 1982) and nucleic acids _    ..     ,;      .       .    , , 
;TT. ,    .„r.^    r. i i     x   .- • J. fixed bond lengths and valence angles. 
(Hmgerty et al., 1989).  Reasonable starting points 
are constructed by combining minima of ^^^■■^^^^■■■■^Mi 
conformational building blocks.  This rational 
strategy has performed rather well in practice, but there is no guarantee that all biologically important 
local minima, much less the global minimum, are revealed.  One of the problems is the nonlocal 
nature of the interactions in the folded macromolecule.  That is, segments far apart in the linear 
sequence will make close contact upon folding; thus, the collective minimum may not correspond to 
any minima of the constituent building blocks.  Furthermore, the number of starting points is still 
exponential in the number of building blocks.  This buildup technique might be an interesting 
mathematical area to explore further, perhaps through techniques of interval analysis (see below under 
global optimization methods). 

Molecular dynamics, discussed on pages 54-58, can also be viewed as a technique for obtaining 
structural information (e.g., mean atomic fluctuations, dynamical pathways, isomerization rates) that 
is complementary to potential energy minimization.  While in theory information on all thermally 
accessible states should be observable, the restriction of the integration time step to a very small value 
with respect to time scales of collective biomolecular motions limits the scope of molecular dynamics 
in practice. 

Local Optimization Methods 
Local methods are defined by an iterative procedure that generates iterates {XQ, xl5 ..., xk,...} 

intended to converge to a local minimum x* from a given x0.  Their performance is clearly sensitive 
to the choice of starting point in addition to search direction and algorithmic details.  In the 
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line-search subclass, a search vector pk is computed at each step by a given strategy, and the objective 
function/is minimized approximately along that direction so that "sufficient decrease" is obtained 
(see, e.g., Dennis and Schnabel, 1983; Luenberger, 1984).  In trust-region approaches, a local 
quadratic model of the function is minimized at every step using current Hessian information, and an 
optimal step is chosen to lie within the "trust region" of the quadratic model (Dennis and Schnabel, 
1983). 

Local deterministic optimization methods have experienced extensive development in the last 
decade (e.g., Nocedal, 1991; Wright, 1991).  Studies have produced a range of robust and reliable 
techniques tailored to problem size, smoothness, complexity, and memory considerations.  Many 
variants of Newton's method have been produced that extend applicability far beyond small or sparse 
problems.  Nonderivative methods are generally not competitive, but significant developments have 
been made in nonlinear conjugate gradient (CG) methods (generally recommended for very large 
problems whose function is very expensive to evaluate) and Newton methods. 

The classes and extensions of Newton's method, the prototype of second-derivative algorithms, 
include discrete Newton, quasi-Newton (QN) (also termed variable metric), and truncated Newton 
(TN) (e.g., Dennis and Schnabel, 1983; Gill et al., 1983b).  Historically, because of the 0(n2) 
memory requirements, where n is the number of variables in the objective function, and the 0(n3) 
computation associated with solving a linear system directly, Newton methods have been most widely 
used (1) for small problems, (2) for problems with special sparsity patterns, or (3) when near a 
solution, after a gradient method has been applied.  Fortunately, advances in computing technology 
and algorithmic developments have made the Newton approach feasible for a wide range of problems. 
Indeed, effective strategies have been tailored to available storage and computation, exhibiting good 
performance in theory and practice, and this trend will undoubtedly intensify. 

Two specific classes are emerging as the most powerful techniques for large-scale applications: 
limited-memory quasi-Newton (LMQN) and truncated Newton methods.  LMQN methods attempt to 
retain the modest storage and computational requirements of CG methods while approaching the 
superlinear convergence properties of standard (i.e., full memory) QN methods (Gilbert and 
Lemarechal, 1989; Liu and Nocedal, 1989; Nash and Nocedal, 1991; Zou et al., 1993).  Similarly, 
TN algorithms attempt to retain the rapid quadratic convergence rate of classic Newton methods while 
making computational requirements feasible for large-scale functions (Dembo and Steihaug, 1983; 
Nash, 1985; Schlick and Overton, 1987).  With advances in automatic differentiation (see Box 4.5), 
the appeal of these methods will undoubtedly increase even further (Dixon, 1991). 

Both limited-memory QN and TN methods are promising for computational chemistry problems. 
Moreover, they can be adapted to both constrained and unconstrained formulations and can exploit the 
special composition (distinct components) of the potential energy function to accelerate convergence 
(Derreumaux et al., 1994).  This issue involves a natural separation of the objective function into 
components of differing complexity (e.g., local and nonlocal interactions).  This special composition 
can be exploited to construct banded or other sparse preconditioners in the context of CG and TN. 
Such problem tailoring requires some familiarity with the algorithmic modules and also demands 
knowledge of the theoretical and practical strengths and weaknesses of the different minimization 
methods.  With rapidly growing improvements in high-performance vector and massively parallel 
machines, application-tailored software may be even more important in combination with parallel 
architectures whose design is motivated by specific applications. 

Global Optimization Methods 
In their attempt to find a global rather than local minimum, global optimization methods tend to 

explore larger regions of function space (see, e.g., Dixon and Szegö, 1975; Floudas and Pardalos, 
1991).  The global minimum of a function can be sought through two classes of approaches: 
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deterministic and stochastic. Deterministic methods usually require the objective function to satisfy 
certain smoothness properties; they construct a sequence of points converging to lower and lower 
local minima.   Ideally, they attempt to "tunnel" through local barriers.  Local minimization methods 
are often required repeatedly in the framework; hence, developments in local methods are likely to 
have an important impact on global techniques as well.  Computational effort tends to be very large, 
and a guarantee of success can be obtained only under specific assumptions. 

Stochastic global methods, on the other hand, involve systematic manipulation of randomly 
selected points (Nemhauser et al., 1989; Rinnooy Kan and Timmer, 1989; Schnabel, 1989; Torn and 
Zilinskas, 1989; Byrd et al., 1990).  Success can be guaranteed only in an asymptotic, stochastic 
sense, although in practice many applications are very promising. 

In the early days of global optimization (mid-1970s), most efforts focused on stochastic or 
heuristic approaches (Dixon and Szegö, 1975).  In chemical applications, simulated annealing 
(Metropolis et al., 1953; Kirkpatrick et al., 1983; Dekkers and Aarts, 1991) is an appealing method 
of this class and is effective for small to medium molecular systems.  It is also very easy to 
implement and generally requires no derivative computations.  Indeed, there has been a wide 
application of this method to chemical systems. 

More recent efforts have focused also on deterministic global optimization methods. Interesting 
examples include the tunneling method (Levy and Gomez, 1985; Levy and Montalvo, 1985) and 
several innovative deterministic approaches in chemical applications (Purisima and Scheraga, 1986; 
Piela et al., 1989; Scheraga, 1992; Shalloway, 1992).  In particular, in the mathematical community, 
two recent powerful methods have been identified that might be useful to chemical applications.  One 
exploits convex properties and is based on differences of convex functions (Pardalos and Rosen, 
1987; Horst and Tuy, 1993); the other is based on interval analysis (Hansen, 1980, 1992; Neumaier, 
1990; Schnepper and Stadtherr, 1993).  The convexity approach has been successful for global 
quadratic problems of up to approximately 300 variables and 50 constraints (Pardalos and Rosen, 
1987; Horst and Tuy, 1993).  Interval analysis, a field little known even to mathematicians, was 
pioneered by Hansen, among others.  It involves computation of strict bounds to bracket the global 
minimum of a function.  The algorithms involve various branch and bound techniques that recursively 
split the configuration space, aiming at bracketing the minimum as tightly as possible.  Other 
information, such as bounds on derivatives, may also be generated.  This class of methods can be 
applied to the solution of nonlinear systems, as well as global constrained and unconstrained 
optimization.  However, these methods require second-derivative information (Hessians for 
optimization problems) and, moreover, the inverse of a preconditioning matrix to produce realistic 
bounds.  For these reasons, interval analysis has been applied only to relatively small problems thus 
far.  However, future research may be promising with preconditioning techniques that are now well 
developed for local optimization. 

Perspective 
In sum, the optimization applications that arise in computational chemistry offer challenging and 

rewarding problems to mathematicians.   There is a need for the development of both local and global 
methods (the latter stochastic as well as deterministic) and for transferring the technology rapidly 
from one discipline to another.  In particular, optimization schemes will be more effective when all 
available chemical information (e.g., function separability, availability of derivatives, additional 
experimental data) is taken into account in design of the algorithm, as is possible by preconditioning 
in both limited-memory quasi-Newton and truncated-Newton algorithms.  Multigrid approaches 
(Kuruvila et al., 1994) and functional transformations (e.g., Piela et al., 1989; Wu, 1994) appear 
promising to global optimization problems in computational chemistry, and further developments 
might be fruitful. 
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Areas of mathematics that may have an important impact on the field are interval analysis and 
automatic differentiation.  While the field of deterministic global optimization is still in its infancy in 
terms of general large-scale applicability, it is anticipated that the exploitation of vector and massively 
parallel computing environments for algorithm design will lead to significant progress in the coming 
years.  Technological advances will clearly improve the range of global optimization strategies that 
can be considered, but greater efforts in parallel programming skills will be essential so that these 
high-performance platforms will have a true impact on these important scientific problems. 

References 
Bischof, C.H., A. Carle, G.F. Corliss, A. Griewank, and P. Hovland, 1992, ADIFOR: Generating derivative 
codes from FORTRAN programs, Scientific Programming 1:1-29. 

Board, J.A., Jr., J.W. Causey, T.F. Leathrum, Jr., A. Windemuth, and K. Schulten, 1992, Accelerated 
molecular dynamics simulations with the parallel fast multiple algorithm, Chem. Phys. Lett. 198:89-94. 

Byrd, R.H., C.L. Dert, A.H.G. Rinnooy Kan, and R.B. Schnabel, 1990, Concurrent stochastic methods for 
global optimization, Math. Program. 46:1-29. 

Ciariet, P.G., 1989, Introduction to Numerical Linear Algebra and Optimization, Cambridge University Press, 
Cambridge. 

Dekkers, A., and E. Aarts, 1991, Global optimization and simulated annealing, Math. Program. 50:367-393. 

Dembo, R.S., and T. Steihaug, 1983, Truncated-Newton algorithms for large-scale unconstrained optimization, 
Math. Prog. 26:190-212. 

Dennis, Jr., J.E., and R.B. Schnabel, 1983, Numerical Methods for Unconstrained Optimization and Nonlinear 
Equations, Prentice-Hall, Englewood Cliffs, N.J. 

Derreumaux, P., G. Zhang, B. Brooks, and T. Schlick, 1994, A truncated Newton minimizer adapted for 
CHARMM and biomolecular applications, /. Comput. Chem. 15:532-552. 

Dixon, L.C.W., 1991, On the impact of automatic differentiation on the relative performance of parallel 
truncated Newton and variable metric algorithms, SIAM J. Opt. 1:475-486. 

Dixon, L.C.W., and G.P. Szegö, 1975, Towards Global Optimization, Elsevier, New York. 

Fletcher, R., 1987, Practical Methods of Optimization, Second Edition, John Wiley & Sons, New York. 

Floudas, CA., and P.M. Pardalos, eds., 1991, Recent Advances in Global Optimization, Princeton Series in 
Computer Science, Princeton University Press, Princeton, N.J. 

Gilbert, J.C., and C. Lemarechal, 1989, Some numerical experiments with variable-storage quasi-Newton 
algorithms, Math. Prog. 45:407-435. 

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, 1983a, Computing forward-difference intervals for 
numerical optimization, SIAM J. Sei. Stat. Comput. 4:310-321. 

Gill, P.E., W. Murray, and M.H. Wright, 1983b, Practical Optimization, Academic Press, N.Y. 

Greengard, L., 1994, Fast algorithms for classical physics, Science 265:909-914. 

74 



Griewank, A., 1988, On automatic differentiation, in Mathematical Programming 1988, Kluwer Academic 
Publishers, Norwell, Mass. pp. 83-107. 

Griewank, A., and G.F. Corliss, eds., 1991, Automatic Differentiation of Algorithms: Theory, Implementation, 
and Application, Society for Industrial and Applied Mathematics, Philadelphia, Pa. 

Grubmüller, H., H. Heller, A. Windemuth, and K. Schulten, 1991, Generalized Verlet algorithm for efficient 
molecular dynamics simulations with long-range interactions, Mol. Simul. 6:121-142. 

Hansen, E.R., 1980, Global optimization using interval analysis—The multidimensional case, Numer. Math. 
34:247-270. 

Hansen, E.R., 1992, Global Optimization Using Interval Analysis, Dekker, New York. 

Hingerty, B.E., S. Figueroa, T.L. Hayden, and S. Broyde, 1989, Prediction of DNA structure from sequence: 
A buildup technique, Biopolymers 28:1195-1222. 

Horst, R., and H. Tuy, 1993, Global Optimization: Deterministic Approaches, second edition, Springer, Berlin. 

Kirkpatrick, S., CD. Gelatt, Jr., and M.P. Vecchi, 1983, Optimization by simulated annealing, Science 
220:671-680. 

Kuruvila, G., S. Ta'asan, and M.D. Salas, 1994, Airfoil optimization by the one shot method, Lecture Notes on 
Optimum Design Methods for Aerodynamics, AGARD FDP/VKI Special Course, von Karman Institute for Fluid 
Dynamics, Rhode-Saint-Genese, Belgium, April, 25-29. 

Leach, A.R., 1991, A survey of methods for searching the conformational space of small and medium-sized 
molecules, in Reviews in Computational Chemistry, Vol. II, K.B. Lipkowitz and D.B. Boyd, eds., VCH 
Publishers, New York. 

Levy, A.V., and S. Gomez, 1985, The tunneling method applied to global optimization, in Numerical 
Optimization 1984, P.T. Boggs, R.H. Byrd, and R.B. Schnabel, eds., SIAM, Philadelphia, pp. 213-244. 

Levy, A.V., and A. Montalvo, 1985, The tunneling algorithm for the global minimization of functions, SIAM J. 
Sei. Stat. Comput. 6:15-29. 

Liu, D.C., and J. Nocedal, 1989, On the limited memory BFGS method for large scale optimization, Math. 
Program. 45:503-528. 

Luenberger, D.G., 1984, Linear and Nonlinear Programming, Second Edition, Addison-Wesley, Reading, 
Mass. 

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, 1953, Equation of state 
calculations by fast computing machines, /. Chem. Phys. 21:1087-1092. 

Nabors, K., F.T. Korsmeyer, F.T. Leighton, and J. White, 1994, Multipole accelerated preconditioned iterative 
methods for three-dimensional potential integral equations of the first kind, SIAM J. Sei. Comput. 15:713-735. 

Nash, S.G., 1985, Solving nonlinear programming problems using truncated-Newton techniques in SIAM 
Numerical Optimization 1984, P.T. Boggs, R.H. Byrd, and R.B. Schnabel, eds., Philadelphia, pp. 119-136. 

Nash, S.G., and J. Nocedal, 1991, A numerical study of the limited memory BFGS method and the 
truncated-Newton method for large-scale optimization, SIAM J. Opt. 1:358-372. 

75 



Nemhauser, G.L., A.H.G. Rinnooy Kan, and M.J. Todd, eds., 1989, Handbook in Operations Research 
Management Science, Vol. 1, Elsevier Science Publishers (North-Holland), Amsterdam. 

Neumaier, A., 1990, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge. 

Nocedal, J., 1991, Theory of algorithms for unconstrained optimization, Ada Numerica 1:199-242. 

Pardalos, P.M., and J.B. Rosen, 1987, Constrained Global Optimization: Algorithms and Applications, Lecture 
Notes in Computer Science 268, Springer, Berlin. 

Piela, L., J. Kostrowicki, and H.A. Scheraga, 1989, The multiple-minima problem in conformational analysis 
of molecules. Deformation of the potential energy hypersurface by the diffusion equation method, J. Phys. 
Chem. 93:3339-3346. 

Pincus, M., R. Klausner, and H.A. Scheraga, 1982, Calculation of the three-dimensional structure of the 
membrane bound portion of melittin from its amino acids, Proc. Natl. Acad. Sei. USA 79:5107-5110. 

Purisima, E.O., and H.A. Scheraga, 1986, An approach to the multiple-minima problem by relaxing 
dimensionality, Proc. Natl. Acad. Sei. USA 83:2782-2786. 

Rail, L.B., 1981, Automatic Differentiation—Techniques and Applications, Lecture Notes in Computer Science 
120, Springer-Verlag, Berlin. 

Rinnooy Kan, A.H.G., and G.T. Timmer, 1989, Global optimization, in Handbooks in Operations Research 
and Management Science, Vol. 1, G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, eds., Elsevier 
Science Publishers (North-Holland), Amsterdam. 

Scheraga, H.A., 1992, Predicting three-dimensional structures of oligopeptides, in Reviews in Computational 
Chemistry, Vol. Ill, K.B. Lipkowitz and D.B. Boyd, eds., VCH Publishers, New York, pp. 73-142. 

Schlick, T., 1992, Optimization methods in computational chemistry, in Reviews in Computational Chemistry, 
Vol. Ill, K.B. Lipkowitz and D.B. Boyd, eds., VCH Publishers, New York, pp. 1-71. 

Schlick, T., and A. Fogelson, 1992, TNPACK—A truncated Newton minimization package for large-scale 
problems:  I. Algorithm and usage, and II. Implementation examples, ACM Trans. Math. Softw. 14:46-111. 

Schlick, T., and M. Overton, 1987, A powerful truncated Newton method for potential energy minimization, J. 
Comput. Chem. 8:1025-1039. 

Schnabel, R.B., 1989, Sequential and parallel methods for unconstrained optimization, in Mathematical 
Programming, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, Norwell, Mass., pp. 227-261. 

Schnepper, CA., and M.A. Stadtherr, 1993, Application of a parallel interval Newton/generalized bisection 
algorithm to equation-based chemical process flowsheeting, Interval Computations 4:40-64. 

Shalloway, D., 1992, Application of the renormalization group to deterministic global minimization of 
molecular conformation energy functions, J. Global Opt. 2:281-311. 

Torn, A., and A. Zilinskas, 1989, Global Optimization, Lecture Notes in Computer Science 350, Springer- 
Verlag, Berlin. 

van Laarhoven, P.J.M., and E.H.L. Aarts, 1987, Simulated Annealing: Theory and Applications, D. Reidel, 
Dordrecht. 

76 



Wright, M.H., 1991, Interior methods for constrained optimization, Acta Numerica 1:341-407. 

Wu, Z., 1994, The Effective Energy Transformation Scheme as a Special Continuation Approach to Global 
Optimization with Application to Molecular Conformation, Argonne National Laboratory report MCS-P442- 
0694, July. 

Zou, X., I.M. Navon, F.X, Le Dimet, A. Nouailler, and T. Schlick, 1993, A comparison of efficient 
large-scale minimization algorithms for optimal control applications in meteorology, SIAM J. Opt. 3:582-608. 

Locating Saddlepoints 

The potential energy hypersurface of an individual molecule describes its minimum energy (i.e., 
stable) states as well as the transition structures linking these states.  In other words, the local minima 
on the potential energy surface correspond to the minimum energy conformations of a molecule, and 
first-order saddlepoints on the surface correspond to transition states.  These concepts can be extended 
to interacting molecular assemblies as well (e.g., clusters, biomolecular systems with solvent). 

With the advent of modern computational techniques, it has become possible to exhaustively search 
the potential energy surface of individual molecules containing fewer than about 12 rotatable bonds 
(i.e., degrees of freedom for the dihedral angles that define molecular geometry, along with bond 
lengths and bond angles, in internal coordinate space) when classical (molecular mechanics-based) 
potential energy functions are employed.  The previous section has broadly described the issues and 
various algorithmic techniques for finding local and global minima on such complex multidimensional 
energy surfaces.  This section focuses on another aspect of conformational searches: the identification 
of saddlepoints and their connection to chemical reactions. 

In addition to a description of the conformational properties of individual molecules, the potential 
energy surface can be employed to describe the energetics of chemical reactions. Therefore, searches 
on the potential energy hypersurface of a molecule can extend to molecular reactions as well 
(Eksterowicz and Houk, 1993).  Reactants and products correspond to energy minima, whereas 
transition states linking products to reactants usually correspond to first-order saddlepoints on the 
energy surface (although unusual symmetries can produce higher-order transition states, including 
those of the "monkey-saddle" type).  Thus, the location of stationary points (particularly minima and 
saddlepoints) on potential energy surfaces represents an important and challenging problem in 
computational chemistry. 

In chemical applications, special conformational-space search methods have been devised for 
locating minima on molecular mechanics-based potential energy surfaces.  These methods include 
stochastic (Saunders, 1987; Chang et al., 1989; Ferguson and Raber, 1989) and deterministic, grid- 
based (Motoc et al., 1986; Lipton and Still, 1988; Dammkoehler et al., 1989) approaches.  Yet, with 
rare exception (Kolossvary and Guida, 1993), conformational searches have not been performed in 
such a way that saddlepoints are located.  Nonetheless, the utility and indeed necessity of determining 
the conformational transition states that link these minima have recently been emphasized (Anet, 
1990).  Whereas in the past, conformational searches have been synonymous with location of energy 
minima, it is clear that in order to adequately study the conformational properties of molecules it is 
essential to locate first-order saddlepoints as well. 

Significant effort has addressed the problem of locating transition states on potential energy 
surfaces derived from quantum mechanics calculations.  A number of algorithms have been developed 
such as those that rely on eigenvector-following techniques (Cerjan and Miller, 1981; Simons et al., 
1983, 1984; Bell and Crighton, 1984; Simons, 1985; Baker, 1986).  In these methods one begins a 
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saddlepoint search at or near a local minimum that is found by standard minimization techniques.  A 
spectral decomposition is performed to find all the normal modes of the system (mass scaled 
eigenvalues and associated eigenvectors of the Hessian matrix (i.e., second-derivative matrix of the 
potential energy); then one of the normal modes is selected and followed in an "uphill" direction (i.e., 
a direction that leads to an increase of potential energy) until a saddlepoint is located.  Evaluation of 
the energy gradient and Hessian matrix at each step of the search is performed until a point on the 
surface is located at which the gradient is zero and the Hessian possesses only one negative 
eigenvalue.  In another approach, the linear synchronous transit method (Halgren and Lipscomb, 
1977) has been employed to aid in the location of saddlepoints.  It locates a maximum along a path 
connecting two structures and thus can be used to provide an initial guess for the transition state 
structure that connects them.  Methods that find the location of saddlepoints by beginning the search 
at points on the potential energy surface that are of higher energy than the saddlepoint one wishes to 
locate have also been described (Berry et al., 1988). Recent developments (Jorgensen et al., 1988; 
Culot et al., 1992) have led to improved efficiency in locating transition states in calculations based 
on quantum mechanics-derived potential energy surfaces.  Nonetheless, the aforementioned 
saddlepoint searches sometimes fail to converge, or they converge to critical points that are minima. 
Clearly, more robust algorithms are still needed, and this is an area that mathematical optimizers may 
find very interesting. 

It is conceivable that algorithms for locating transition states on potential energy surfaces derived 
from calculations based on quantum mechanics could be employed for the location of conformational 
transition states on molecular mechanics-derived potential energy surfaces once the minima have been 
located.  However, these algorithms have generally been used to study mechanisms of chemical 
reactions and have not been adequately tested for locating such conformational transition structures. 
In a typical conformational search procedure, the potential energy surface is scanned randomly or 
systematically and a large number of trial structures are generated for energy optimization.  These 
structures can be severely "distorted" geometrically in the sense that bond lengths and angles lie out 
of the ranges observed experimentally, and van der Waals radii of atoms may overlap.  These 
structures must then be optimized by the standard, "greedy" descent methods of local minimization 
toward a local minimum or toward a saddlepoint.  However, for the quantum chemical calculation of 
a reaction mechanism, the reactant and product are usually known, and uphill movement toward the 
interconnecting saddlepoint is sought. 

Conformational search procedures that locate first-order saddlepoints and minima with equal 
efficiency would be of enormous utility.  Even though advances in this area have been slow, some 
progress has been achieved.  For example, the so-called self-penalty walk method (Czerminski and 
Elber, 1990) provides an example of an algorithm for the calculation of reaction paths in complex 
molecular systems when molecular mechanics-derived potential energy functions are employed. 
However, it is likely that additional work will be required to develop methods for the efficient 
conformational searching of saddlepoints.  New algorithms for conformational searches in which first- 
order saddlepoints are efficiently located are clearly urgently needed. 
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Sampling of Minima and Saddlepoints 

Many problems in computational chemistry require a concise description of the large-scale 
geometry and topology of a high-dimensional potential surface.  Usually, such a compact description 
will be statistical, and many questions arise as to the appropriate ways of characterizing such a 
surface.  Often such concise descriptions are not what is sought; rather, one seeks a way of fairly 
sampling the surface and uncovering a few representative examples of situations on the surface that 
are relevant to the appropriate chemistry.   Some specific examples include finding snapshots of 
crucial or typical configurations or movies of kinetic pathways.  This allows what one might call an 
artistic description of the chemical situation.  Such a description is often looked down upon by 
quantitative scientists as being "anecdotal," but it is important not to cut ourselves off from any route 
to understanding.  To make this point one might compare the kinds of understanding of ancient 
cultures that are obtained from the numerous scholarly statistical studies of bookkeeping accounts and 
what we learn from the great paintings of the same periods, which give us different perspectives on 
social life.  The main danger of such artistic representations is that one must have some guarantee that 
they do not simply represent a kind of beautiful propaganda for an incorrect qualitative viewpoint. 
Clearly, statistics must be used to validate such individual samples of a system's behavior. 

Several chemical problems truly demand the solution of these mathematical problems connected 
with the geometry of the potential surface.  Such a global understanding is needed to be able to 
picture long time scale complex events in chemical systems.  One area in which this is clearly 
essential is the understanding of conformational transitions of biological molecules.   The regulation of 
biological molecules is quite precise and relies on sometimes rather complicated motions of a 
biological molecule.  The most well studied of these is the so-called allosteric transition in 
hemoglobin, but indeed, the regulation of most genes also relies on these phenomena.  These 
regulation events involve rather long time scales from the molecular viewpoint.  Their understanding 
requires navigating through the complete configuration space.  Another such long time scale process 
that involves complex organization in the configuration space is biomolecular folding itself.  By what 
process is the structure of a biological molecule determined? In order to function, enzymes require a 
fairly precise three-dimensional positioning of different chemical groups in the protein molecule.  To 
achieve this precise positioning of only a few groups, the collective interactions of the rest of the 
molecule must conspire to form such a fairly rigid construction.  Although the three-dimensional 
structures of protein molecules exhibit some symmetries, they are exquisitely complex, and in 
addition, the architectures of folded protein are formed from molecules that have no simple pattern in 
their one-dimensional sequence. 

Understanding how the Brownian motion on an energy surface can funnel such a molecule to a 
very precise structure is a major puzzle requiring a global analysis of the many-dimensional energy 
surface.  The global geometry of the potential energy surface also enters into the study of 
nonbiological chemical problems such as those involving the structure and mechanical properties of 
amorphous materials.  While crystalline solids can be studied through the analysis of the ground state 
and the first few excited states, glasses and other amorphous materials have a huge number of local 
structural configurations.  Unlike a typical liquid, however, these individual configurations last for 
incredibly long periods of time, and one must understand the statistics of the different minimal energy 
structures and the nature of the transitions between them in order to quantify the slow relaxations of 
such systems.   The aging of amorphous materials in glasses shows that they do not obey the simple 
equilibrium statistical mechanical laws so often used to characterize simple materials.   At the same 
time, these aging phenomena have great practical significance to the macroscopic properties (e.g., 
long time stability) of materials important to such applications as fiber optics.  The local minima are 
the mathematically simplest objects to characterize statistically the potential energy surface.  The 
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crucial questions here are first, what do the minima look like and, second, how many of the different 
kinds of minima exist on the surface? Sampling many minima of a potential energy surface can be 
carried out with gradient descent techniques, and a great deal has been learned about the qualitative 
structural characteristics of these minima for both biomolecules and glasses.  The counting of minima 
seems to be of crucial importance as well, since 
at the phenomenological level, the kinetics of ^mma^^^^^^mm^^^^^^^^^amm^^^mm 

amorphous materials are highly correlated with statistical mechanics is the study of the collective 
their configurational entropy.   At this point, no behavior of large numbers of interacting particles, 
very good algorithm yet exists for doing this Properties of interest include those describing 
sort of counting in an objective and reliable time-dependent, irreversible process.  The basic 
way, even on a computer. principles of this discipline were laid down in the 

The very deepest minima of systems can be        nineteenth century by Ludwig Boltzmann, James 
characterized by using techniques superficially Clerk Maxwell, and Josiah Willard Gibbs. 
similar to those of thermodynamics and ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
equilibrium statistical mechanics. 
Generalization of mean field theory for random 
Hamiltonians is used.  The low-lying states of heteropolymeric biological macromolecules have been 
studied in this way.  There is a very clear analogy to the phenomenon of broken ergodicity studied in 
spin glasses by the quasi-equilibrium statistical mechanical methods.  The problem of broken 
ergodicity is one that is central to understanding the global topology of potential energy surfaces for 
such "random" systems.  This problem plays a role both in the issues discussed here of biological 
macromolecules and amorphous materials, and in other optimization problems as well.  There are 
deep connections with the theory of NP-completeness, a fundamental question in theoretical computer 
science.  The formal questions of broken ergodicity in spin glasses (i.e., the topology of low-energy 
states) have not been answered entirely unambiguously by experiment, and the question of the nature 
of the low-lying states is one that is still hotly debated.  An important route to understanding this sort 
of broken ergodicity has been by the methods of rigorous statistical mechanics pioneered by 

mathematicians.  It has been shown rigorously in 
^^^^^^^^^^^^^^^^^^^^^^^^^    some higher-dimensional problems that the broken 

ergodicity imagined in simple phenomenological 
Ergodicity is the capacity of a dynamical theories of protein folding can, in fact, occur.  It is 
system spontaneously to sample all of its still an open question, however, how ergodicity is 
phase space. broken for three-dimensional systems, spin glass 

^^^^^^^^^^^^^^^^^^^^^^^^^    systems, or for the random heteropolymers 
themselves. 

One of the most interesting results of the theory of broken ergodicity based on quasi-equilibrium 
statistical mechanics is that the low-energy states of a typical Hamiltonian are related to each other in 
a fashion that is characterized by an ultrametric distance.  This ultrametricity concept arose earlier in 
the study in pure mathematics.  The ultrametric organization may well play a role in the dynamics on 
such surfaces, and ultrametric hopping models have been widely discussed. 

While the use of statistical energy surface topography is now coming to be accepted in the context 
of biomolecules, there is a still deeper mathematical question in its application to glasses.  This 
question is, How does a Hamiltonian that is perfectly regular, having no explicit randomness, possess 
solutions that appear to be totally irregular and aperiodic? A long-standing issue for the purist has 
been whether even hard spheres have, as their most dense state, the simple regular packing 
characteristic of face-centered cubic (FCC) crystals. Recently a proof of this was announced, but it 
has apparently been retracted. In fact, for the three-dimensional situation there is little, doubt from the 
experimental input that the dense state is in fact periodic. The question of the closest packings in 
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BOX 4.6 Comments on the Ambiguous Concept of "Structure" 
for Complex Molecules and Macromolecules 

Owing to the special nature of their roles in life processes, biological macromolecules such as proteins, 
nucleic acids, and carbohydrates have evolved into systems exhibiting a high degree of structural diversity 
and complexity.  Theoretical/computational chemistry bears the responsibility of predicting, characterizing, 
and explaining the biological reasons for the three-dimensional shapes or "structures" adopted by those 
macromolecules. 

However, researchers should be aware (particularly on first entering this problem area) that the concept 
of "structure" has multiple interpretations that depend on the physical and chemical circumstances involved. 

As explained in the main text, prediction of the preferred structure adopted by any given molecule is 
usually reduced in principle, if not in practice, to the study of minima on a suitable energy surface in a 
multidimensional space of configurational coordinates.  In many—but not all—cases, the global minimum 
corresponds to the biologically active structure, while higher-lying relative minima correspond to inactive 
denatured forms. 

The figure below shows, in simple cartoon fashion, three generic energy surfaces.  The simplest (a) 
contains but a single minimum that would be easy to locate numerically.  The next (b) shows multiple 
minima and requires more effort if a full classification of extrema is warranted by the problem it represents. 
Case (c) is most representative of the situation with biological macromolecules, with a vast array of minima 
arranged in basins or valleys over a wide range of length scales.  In this last circumstance, the concept of 
"structure" depends in part on the level of accuracy that is warranted, and that level is strongly dependent on 
temperature. 

At very low temperature (e.g., a protein frozen in its aqueous medium), thermally excited vibrations will 
be so feeble that the system of protein and water molecules would be trapped in the vicinity of a single fine- 
grained minimum.  Raising the temperature stimulates transitions between neighboring microbasins, so the 
relevant notion of "structure" entails the average configuration for the broadened distribution.  A simple view 
would be that raising the temperature effectively smooths out the finer features of the complicated energy 
surface.  This amounts to passage from (c) to (b) in the figure. 

(a) simple (b) complicated (c) much more complicated 
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In the vicinity of room temperature, where the aqueous medium is liquid, it is traditional to average over 
the solvent degrees of freedom and to utilize the resulting "free energy surface" for biological macromolecule 
studies.  Consequently, the configuration space undergoes a reduction in dimensionality to that of just the 
macromolecule's flexible degrees of freedom.  At the same time, the surface to be searched for minima 
becomes temperature dependent, so the number of minima it exhibits, where they are located, and indeed 
which is the absolute minimum can vary.  Furthermore, interbasin transitions can produce substantial 
configurational fluctuations even in this reduced-dimensionality representation, requiring a correspondingly 
permissive definition of "structure." 

high-dimensional systems has many contacts with group theory and the theory of optimal coding. 
The existence of quasicrystals has made the problem an even richer one since even the existence of 

such quasi-periodic structures was ruled out by "folk theorems" of physicists.  It is likely that truly 
aperiodic crystals can, in principle, exist in three dimensions.  An important argument for this is 
based on tiling theory.  It has been shown that certain tiling problems are NP-complete.  This implies 
that it is certainly very difficult to figure out whether a periodic packing of such a tiling is possible. 
Thus, it seems that the problem of totally aperiodic crystal phases for regular structures may be itself 
tied to the NP-completeness question. 

The problem of transitions between minima on such a high-dimensional surface is in a still more 
primitive state than the characterization of minima.   The search for minima is itself a relatively stable 
computational problem.  The search for saddlepoints that connect individual minima is 
computationally much more difficult.  This is certainly a consequence of the unstable mode at such 
saddlepoints.  Despite numerous efforts, there are no entirely reliable methods for carrying out such a 
search.  For many simple problems, finding a reasonably good transition state is possible, but these 
techniques become still more complicated and less reliable as system size increases.  On the purely 
theoretical side, very simple models that relate the heights of barriers to the statistics of minima have 
been developed, but almost no truly rigorous work has been done.  Simply characterizing the minima 
and the saddlepoints connecting a few of them does not give an entire description of significant 
processes on a complex energy landscape.  It is clear that one must understand something more about 
the basin of attraction of any given minimum.   If the nearby minima are not entirely uncorrelated, 
this basin of attraction will depend on their structure as well.  A characterization of the size of such 
funnels in biomolecular problems is essential to understanding protein folding. 

Similarly, in many such complex problems it has been imagined that specific kinetic pathways are 
important.  Again some work has already been done on the question of how specific pathways can 
emerge on a statistical energy landscape.  These ideas are, however, based on the quasi-equilibrium 
statistical mechanics of such systems, and there are many questions about the rigor of this approach. 
Similarly, a good deal of work has been carried out to characterize computationally pathways on 
complicated realistic potential energy surfaces. 

Techniques based on path integrals have been used to good effect by Elber in studying the 
recombination of ligands in biomolecules and in the folding events involved in the formation of a 
small helix from a coiled polypeptide.  These techniques tend to focus on individual optimal 
pathways, but it is also clear that sets of pathways are very important in such problems.  How these 
pathways are related to each other and how to discover them and count them is still an open 
computational challenge. 
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BOX 4.7 Implications of Dynamical Chaos at the Classical Level 

A large part of modern computational chemistry is based on the solution of the equations of classical 
mechanics for many-body systems.  For these problems, the standard numerical integration techniques 
found in classic textbooks only provide a simple framework for application and analysis.  This is because 
most of the theory of numerical analysis provides criteria for long-time stability for these smaller systems 
with regular dynamics.  Nevertheless, it is clear that for most many-body chemical systems, the 
differential equations may have chaotic solutions primarily.  Thus, it is of little use to talk about the 
stability of an individual trajectory for long times, particularly when methods with some stochastic 
elements (e.g., Langevin dynamics) are involved. 

A necessary mathematical advance is an understanding of error estimation and long-time stability for 
chaotic systems.  In fact, one seeks a way of characterizing the accuracy in some statistical sense from 
such a simulation, or collection of simulations, since an individual trajectory's details are certainly 
predicted incorrectly.  The classical theory of error estimates in numerical analysis is clearly inadequate 
for most purposes and the theory of long-time stability for complex systems is rather at its infancy (Stuart 
and Humphries, 1994). 

A most striking example is in the old simulations of hard-sphere molecular dynamics showing 
trajectories for times encompassing many, many collisions of a dilute gas (e.g., Alder and Wainwright, 
1970).  One can easily show that the trajectories were numerically inaccurate beyond the limit of machine 
precision, even after only 10 collisions.  Nevertheless, when the velocity correlation function was 
computed, it exhibited a long-time tail that persisted out to 30 collision times, and this long-time tail's 
form as well as amplitude agreed precisely with kinetic theory calculations.  Thus, statistical properties 
can be accurate even when individual trajectories are entirely incorrect. 

A similar problem enters when one considers the use of "stochastic dynamics" methods in simulation 
(e.g., pseudorandom forces are added to the systematic force to mimic a thermal reservoir).  When only a 
subsystem of a larger system (e.g., biomolecule plus solvent) is being studied, the appropriate equations of 
motion are stochastic or Langevin equations.  The most familiar example is the diffusion of biomolecules 
in water.  The theory of quadratures for such stochastic equations has long been of interest, but compre- 
hensive analyses of associated error estimates have been developed mainly from a relatively simple point 
of view, such as via analysis of harmonic oscillators (Pastor et al., 1988; Tuckerman and Berne, 1991). 

However, there are many important mathematical issues that arise in this connection.  What is the 
meaning of "error analysis" in this stochastic framework?  Is it appropriate to compare results to parallel 
approaches, such as molecular dynamics, where the stochastic forces are zero?  Are asymptotic results as 
the time step approaches zero relevant to practical problems?  As discussed elsewhere in this report, the 
complexity of biomolecular systems involves multiple conformations and numerous biologically relevant 
pathways.  And, given the severity of the time step problem in molecular dynamics (see pages 54-58), 
how can qualitative and quantitative theories for evaluating simulation results be merged?  Clearly, there is 
a strong need for both aspects, but one can imagine that different numerical models in combination with 
different integration or propagation methods could be designed to address various aspects of the dynamical 
problems.  Therefore, an organized theory for simulation evaluation, including local error analysis, long- 
time behavior, and some kind of broader or "global" framework for evaluation, would be extremely 
valuable.  Such a theory could clearly aid in evaluating new models and methods as they arise, identifying 
the appropriate tests for the various simulation protocols, and putting in perspective the biological results 
that may emerge from any computer simulation. 
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Efficient Generation of Points That Satisfy Physical Constraints 
in a Many-Particle System 

Prototypical Problem 
Consider N particles in a cube in three-dimensional space, each with x, y, and z coordinates in the 

range [0, LJ.  The state of the system is then given by specifying the positions r, of all N points. 
In the statistical mechanics modeling of condensed phases, one typically is interested in restricted 

sets of particle configurations. For instance, one's interest is often restricted to only those states for 
which 

\r. -r.\ z 1     for all l<i<j<N. 

Imagine that the points represent the locations of the centers of hard spheres of diameter unity.  The 
conditions state that the hard spheres do not overlap one another; that is, the spheres repel each other 
strongly.when they are close together, so that each center-center distance must be greater than unity. 

For the present problem, we are interested in the regime where N is large, of the order of 102 to 
106.  The volume is large enough so that N/Ü is in the range (0,2*). In the actual problem of 
common interest for computer simulation of materials, the system will satisfy periodic boundary 
conditions.  In effect, this means that the restriction above is more precisely stated as 

\r. -r. -nL\ > 1     for all 1 < i<j <. N 

and all vectors n with integer components. 

The problem is to generate efficiently states of the system that satisfy these constraints.  The states 
will more than likely be generated by a stochastic process of some sort.  A more ambitious goal is to 
generate states such that all states that satisfy the constraints are equally likely to be generated.  (More 
precisely, if the set of positions {r„ . . . , rN} is regarded as a set of random variables, the joint 
distribution function for these variables, which is zero when one or more of the constraints is 
violated, should be a constant for values that satisfy the constraint.) 

This is an example of a problem for which each constraint is relatively easy to state and express in 
terms of a small number of the variables in the problem, and the number (or measure) of states that 
are consistent with the constraints is very small compared with the total number of states, in fact 
vanishing exponentially as N increases.  This problem is related to that of generating possible states 
for an atomic fluid whose interatomic potential precludes two atoms from getting close to one 
another.  The rigid-sphere interpretation relates to the challenging mathematical problem of existence 
and characterization of random sphere packings. 

Variations on the Prototypical Problem 
First Variation.  Consider a random walk in a three-dimensional space that consists of N steps of unit 
length and random direction.  Let s, for i > 1 be the z'th step.  The position 

i 

is the location of the random walker after the ith step, with r0 being equal to the origin. The only 
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states of interest are those for which these positions never come close to one another.  More 
precisely, 

\r. - r.\ > 1     for all 0 < i <j <N. 

This problem is related to specifying the possible structures of a polymeric molecule.  The goal is to 
generate random walks that satisfy these conditions.  As in the previous problem, the method of 
generation is likely to be probabilistic.  A stronger goal would be to generate states with a process 
such that all states that satisfy the constraint are equally likely to be generated.  (More precisely, if 
each step s, of the random walk is specified by a location on the surface of a unit sphere, the joint 
distribution function of the N steps should be zero for sets of steps that violate the constraints and a 
constant for sets that satisfy the constraints.) 

Second Variation.  In problems of interest, there may also be some additional constraints on the 
locations; for example, for some pairs of locations, there might be restrictions of the form 

aij*\ri-rMby 

When the number of these restrictions is large enough to imply that only a small range of structures 
can satisfy all the constraints, the problem becomes a special case of the problems that are solved by 
using the methods of distance geometry, which is discussed in more detail in Chapter 3. 

Third Variation. The various steps in the random walk of the previous problem might be correlated 
in the sense that the probability distribution for s, might depend on the value of sM or perhaps both sM 

and Sj_2. 

In these problems, there are some constraints that are "easy" to satisfy (e.g., in the first problem 
each particle must be inside the cubic box; in the second problem, each step must have unit length). 
Then there are others that are "harder" to deal with.  Whether a constraint is hard or easy to deal 
with is related, in general, to whether it is concerned with just one of the basic vectors of the problem 
or with more than one. 

Simplest Strategy 
The simplest strategy for generating states that satisfy all the constraints is obviously to generate 

states that satisfy the easy constraints and then delete those states that violate the hard constraints. 
This solution is practical, if at all, only for relatively uninteresting situations.  It works for the first 
problem, for example, only when the density N/Ü is much lower than the maximum density allowed. 
The problem is that almost all of the states generated will subsequently be deleted by this process. 

More precisely, in the first problem one might imagine generating sets of Appoints, each of which 
is randomly distributed in the cube, and then discarding sets that violate the conditions specified.  The 
sets not discarded then should be uniformly and randomly distributed among the states that do satisfy 
the conditions.  The difficulty with this approach is that the probability that a set of randomly 
generated points satisfies the condition is of order exp(-aA0 for large N, where a is a constant that 
depends on the density N/L\   For large N, therefore, much of the computational effort is wasted. 

An obviously more efficient procedure is to generate the set of positions one at a time and test 
each one to ensure that it is far enough from the previous positions before generating the next 
position.  If one violation of the conditions is found this way, no effort need be expended to generate 
the remaining positions in the set or to test them.   Even this is not efficient enough.   A significant 
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amount of effort will be expended in generating partial sets of positions, only to find that the set must 
be discarded because of the value of some position generated late in the sequence.  This difficulty is 
sometimes referred to as the problem of "exponential attrition" because of the exponentially small 
fraction of sets of positions that are generated successfully. 

Metropolis Monte Carlo Method 
In this strategy one first generates one state that satisfies all the constraints; then this is used as the 

beginning of a Markov process whose transition probabilities are such that transitions are allowed 
only to other states that satisfy the constraints.  In practice, this means that each transition typically 
involves a change of, at most, one of the coordinates by a very small amount.  The two difficulties 
with this method are the following: 

1. The set of states that satisfy the constraints may not be connected, so that with a particular 
initial state it will be impossible to generate a very large fraction of the states. 

2. Even if the set of states that satisfy the constraints is connected, typical Markov processes 
explore the range of accessible states relatively slowly. 

Therefore, some entirely new ideas for dealing with this class of problems would be worthwhile. 

Relationship of These Problems to More General Optimization Problems 
Some special cases of these problems, especially the first and second variations described above, 

are closely related to optimization problems that arise in chemical calculations.  Chemical 
optimization problems typically involve minimization of an energy or free energy that depends on the 
positions of atoms or groups of atoms.  (See pages 68-77 for a discussion of optimization problems 
and methods.) In more general problems, the object is not to minimize the energy or free energy but 
to calculate the typical properties of all the states of low enough energy that they might be populated 
at the temperature of interest.  Such functions typically are very large and positive for certain 
configurations in which atoms or molecules are very close.  It is typically true that a configuration in 
which any one pair of atoms is too close to one another has a high enough energy to make the total 
energy of the configuration so high that it cannot possibly be a solution of the optimization problem 
(or so high that it is not thermally populated).   Thus, identification of states that are consistent with 
constraints of the type mentioned can be a useful first step toward solving optimization problems in 
chemistry. 

Molecular Diversity and Combinatorial Chemistry in Drug Discovery 

Overview of the Drug Discovery Process 
The discovery of new drugs is a time-consuming, risky, and expensive process.  These things are 

true even though in the past 15 years there has been a dramatic increase in the number of three- 
dimensional structures of proteins that can be used as scaffolds for the conceptual and computational 
aspects of drug design.  The discovery traditionally moves through several stages once the biological 
target has been chosen (see Science, 1994). 

First, a moderately active compound, a "lead," is identified from clues provided by the literature, 
through "random" screening of many compounds or through targeted screening of compounds 
identified by three-dimensional searching or docking.  If the three-dimensional structure of the 
biological target macromolecule is known, then one may use three-dimensional searching to identify 
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A pharmacophore is a chemical identity and geo- 
metrical arrangement of the key substituents of a 
molecule that confer biochemical or pharma- 
cological effects. 

existing compounds that are complementary to the binding site in the target (Kuntz, 1992; Martin, 
1992).  Alternatively, if a number of structurally unique compounds bind to the target, one may 
propose a three-dimensional pharmacophore and search databases for matches to it (Martin, 1992). 

Once a lead has been identified, hundreds to thousands of additional compounds are designed and 
synthesized to optimize the biological profile.  The cost and environmental impact of synthesis and 
patentability are also important issues.  If the three-dimensional structure of the biological target is 
known, then molecular modeling might be used in the design (Erickson and Fesik, 1992).  As testing 
data are accumulated, statistical three-dimensional quantitative structure-activity relationships (three- 
dimensional QSAR) may help set priorities for 
synthesis.  Any attractive compounds found are 
tested in more detail through advanced protocols 
that more reliably forecast therapeutic and 
toxicity potential. 

Lastly, the surviving compounds are 
prioritized, and the best compound known at 
that time is prepared for clinical trial. 

New mathematical techniques could have an impact on the rate of new compound discovery if the 
potency of compounds could be forecast more quickly and accurately before their synthesis.  Many of 
the improvements in computational chemistry discussed elsewhere in this report would also impact the 
ability to forecast affinity based on the structure of the ligand and the macromolecular target. 
However, additional opportunities exist for cases in which the structure of the macromolecular target 
is not known, cases for which the forecast is based on three-dimensional QSAR investigations 
(Kubinyi, 1993).  The most explored method is comparative molecular field analysis (CoMFA; 
Cramer et al., 1988).  With CoMFA, molecules are aligned with each other; then for each molecule, 
the interaction energies with various probes are calculated at intersections of a three-dimensional 
lattice that encloses all the molecules.  The relationships between these thousands of energy values 
and the potencies of the 10 to 100 molecules are established by the statistical method of partial least 
squares (PLS) with leave-one-out cross-validation (see Frank and Friedman, 1993, for background on 
PLS and comparisons of the method to other statistical procedures).  When a CoMFA model is found, 
it generally has quite robust forecasting ability:  the average error in forecasting the potency of 85 
compounds in eight datasets is 0.55 logs or 0.8 kilocalories per mole (Martin et al., in press). 

However, there are indications that one may fail to find a model, even though one exists, because 
of the coarseness of the lattice spacing (2 Ä) and the sensitivity of PLS to noise.  PLS can find only 
linear relationships between properties and biological potency; a method that could detect nonlinear 
relationships would be an improvement and might model more sets of data.  Limited experiences with 
neural nets have shown no improvement over PLS. There might be an optimization method that could 
select the relevant variables from a pool of thousands.  It would have to be roughly as fast as PLS (a 
minute or so to do leave-one-out cross-validation on 25 compounds) since one of the elements of the 
analysis is to compare results with different properties calculated at the lattice points, adding whole 
molecule properties, comparing alignment rules, investigating outliers, and combining and separating 
subseries of molecules. 

Sources of Molecular Diversity 
The weak point in the whole scenario of new drug discovery has been identification of the "lead." 

There may not be a "good" lead in a company's collection.  The wrong choice can doom a project to 
never finding compounds that merit advanced testing.  Using only literature data to derive the lead 
may mean that the company abandons the project because it cannot patent the compounds found. 
These concerns have led the industry to focus on the importance of molecular diversity as a key 
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ingredient in the search for a lead.  Compared to just 10 years ago, orders of magnitude more 
compounds can be designed, synthesized, and tested with newly developed strategies.  These changes 
present an opportunity for the imaginative application of mathematics. 

Automated testing methods employing simplified assays, mixing strategies, robotics, bar-coding, 
etc., have led many pharmaceutical and biotechnology companies to test every available compound, 
perhaps 105 to 106 of them, in biological assays of interest (Gallop et al., 1994; Gordon et al., 1994). 
Testing a collection generally takes approximately six months. This operation presents several 
challenges: (1) Is it really necessary to test all of the compounds in order to identify the series of 
compounds that will show the activity? (2) Should a pilot set of compounds be tested first to adjust 
the assay conditions and forecast how many active compounds will be found? If so, how would this 
set be selected? (3) What compounds, available from outside vendors, should be selected for purchase 
to complement the set of in-house compounds? Is there a way to quantify their worth other than the 
cost to synthesize in-house? 

Concurrently, synthetic chemists developed new strategies that provide large numbers of 
compounds for biological testing typically as mixtures.  Such libraries, synthesized in a few months, 
can contain 104 to 107 different chemical structures (Baum, 1994).  Although this number of 
compounds seems high, note that it has been estimated that there are 10200 stable chemical compounds 
of molecular weight less than 750 that contain only carbon, hydrogen, nitrogen, oxygen, and sulfur. 
Even factoring in their possibility of synthesis and realistic chemical and physical properties still 
leaves on the order of 10180 compounds to consider.  How, then, does one choose which 104 

compounds should be included in the first library, or the second? 
A final strategy to enhance molecular diversity results from computer programs that design 

molecules to meet specified three-dimensional criteria, typically based on the experimental structure of 
a protein binding site (Rothstein and Murcko, 1993).  The programs design molecules to meet 
geometric criteria and include electrostatic complementarity at the level of force, fields such as those 
used for molecular dynamics.  The diversity arises from the combinatorics:  a protein binding site 
usually contains at least four or five hydrogen-bonding or charged groups; a ligand might interact 
with most or all of them, and many different templates might be able to fit into the binding site and 
orient polar groups for optimal interaction.  Hence, it is expected that a huge number of nicely fitting 
molecules might be designed.  Although design programs could be set up to produce only those 
molecules that could be synthesized readily, this severely limits the diversity.  Hence, it is likely that 
the designed molecules will have to be made by traditional synthesis.  This places a realistic upper 
limit of 25 molecules to be selected.  Even if binding affinity could be forecast precisely, we are a 
long way from forecasting every type of toxicity or drug metabolism quirk that a molecule might 
possess.  Again, we face the problem of selection of the most diverse sample from a population. 

Current Computational Approaches to Compound Selection 
There are three aspects to the problem of selecting samples from large collections of molecules: 

First, what molecular properties will be used to describe the compounds?  Second, how will the 
similarity of these properties between pairs of molecules be quantified? Third, how will the 
molecules be grouped or clustered? 

For datasets of size 104 and higher, the standard method of describing the molecules for clustering 
encodes the presence or absence of substructural features in a bit-string, typically of length 256-1024 
(Willett, 1987; Hodes, 1989).  In modern systems, these substructural features are recognized by 
enumerating all paths of length 0-7 in the molecular graph and using these to populate one or more of 
the bits (Weininger et al., 1994).  It typically takes one to two hours on a modern workstation to 
generate such fingerprints of a database of 105 compounds.  The time required for this process 
increases linearly with the number of compounds. 
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BOX 4.8 Possibility of Intelligent Algorithms to Detect Novel Phenomena Automatically 

The total amount of numerical information generated in a typical computer simulation is immense. 
Whether the model system under study is inorganic or biological, classical or intrinsically quantum 
mechanical, in thermal equilibrium or violently nonstationary, the processing of the data created is usually 
structured to address a small set of often conceptually orthodox questions that have been selected 
beforehand.  Given the inappropriateness of trying to examine raw numerical information in tabular form, 
this is entirely reasonable.  Nevertheless, serendipitous discoveries that fall outside the preselected query 
set indeed do occasionally occur, and their consequences can produce significant advances. 

The usual procedures for carrying out computer simulations probably are far from optimal in detecting 
initially unsuspected correlations and phenomena.  This leads one to suspect that generic pattern- 
recognizing algorithms might be constructed that would operate in conjunction with Monte Carlo or 
molecular dynamics simulations and would effectively amplify the human scientist's limited capacity to 
pull novel correlations out of huge files of numerical data.  Generally speaking, humans are best at 
recognizing visual patterns—after all, the human visual apparatus has been honed to exquisite sensitivity 
by approximately a billion years of evolutionary trial.  But in the scientific context this requires that just 
the right graphs or figures be presented to the investigator, and in one respect it presupposes something 
about the nature of the correlations to be examined.  One hopes to transcend such human limitations, 
perhaps with a carefully crafted form of open-ended artificial intelligence that incorporates pattern- 
detecting capacity free from our human biases and limitations.  In particular, computers ought to be able 
to "see" in spaces of dimension higher than three and pick out significant patterns whose projection into 
two or three dimensions would obscure the phenomena of interest. 

This opportunity is not so much intended as an attempt to replace human researchers as it is to magnify 
their wisdom and insight.  In this respect, generic pattern-detecting software could be a powerful device 
operating to maximize productivity.  And it should not escape notice that such a tool is not restricted just 
to simulation data, but in principle could also apply to other classes of large chemical databases discussed 
elsewhere in this report. 

The second step is to calculate the similarity of every molecule to every other molecule in the 
dataset.  The similarity measure traditionally used, the Tanimoto coefficient, is expressed as 

F.. 
Sim.. =  'I  

1      Fi+Fj + Fy 

where Sim^ is the similarity of molecule i to molecule j, F^ is the number of features (bits set to 0 or 
1) in common between molecule i and molecule j, Ft is the number of bits set in molecule i, and F is 
the number of bits set in molecule j.  For the same 105 compounds, this process takes on the order of 
24 hours.  Since every molecule is compared with every other, it scales as the square of the number 
of compounds.  Lastly, the Jarvis-Patrick clustering method (Jarvis and Patrick, 1973) is used to 
group the compounds.   This method is based on comparing the nearest neighbors of compounds and 
is very fast, taking only seconds to accomplish.  Although each of these steps is feasible, none is 
optimal. 

Opportunities for Improvements in Computational Approaches to Compound Selection 
Molecular fingerprints are not the best descriptor to use to select compounds for bioactivity since 

the biological properties of compounds depend on their three-dimensional complementarity of shape 
and electronic properties with those of the target biomolecule.  Clearly, we would like to consider the 
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three-dimensional structures of the molecules—shape, the location of intermolecular recognition sites 
such as hydrogen-bonding or charged groups, and the way in which the position of these features 
changes with changes in conformation.  Speeding up such calculations or representations of the results 
would be a big help. 

However, the problem of how to represent conformational flexibility in this context is a bigger 
challenge—do we need a totally different way to represent the structures than coordinates or distances 
between pairs of atoms? It is important to recognize that two-dimensional molecular structure is the 
basis of both chemical synthesis strategy and patent claims, and so the representation must also 
include the two-dimensional structure.  This is a clear example where the choice of model is 
significant and must be the result of close collaboration between mathematical and chemical scientists. 

Any new molecular descriptor will require that one define a corresponding metric for the similarity 
or distance between compounds to be used in grouping them.  For example, in contrast to 
substructural features, which are either present or absent, distances are continuous and do not fall so 
easily into a bit-string.  Should distances be binned—if so, should the bins be fuzzy or overlapping? 
How is similarity evaluated in such cases? 

On the other hand, one might quantitate the similarity of two molecules by the size and 
composition of the maximum common substructure.  Experience with the Bron-Kerbosh algorithm 
(Bron and Kerbosh, 1973) has shown a rate of 106 comparisons per hour.  For a dataset of size 105, it 
would take 1010 comparisons or 104 hours to prepare the similarity matrix!  Similarly, 106 molecules 
would require 1012 comparisons and 106 hours.  Although parallelization might allow one to perform 
the calculations, a better algorithm might accomplish the same thing with greater efficiency.  It might 
be possible to eliminate most of the comparisons while retaining all important ones. 

Improvements in the grouping of compounds are sorely needed.  The Jarvis-Patrick algorithm 
performs poorly on sets of very diverse compounds.  For example, a typical result produces a few 
large clusters, each containing very different compounds, and many singletons.  There are sometimes 
clusters that contain compounds with a similarity of 0.2 on a scale of 0.0 to 1.0, with 1.0 the upper 
limit.  Clearly, this is not clustering similar compounds together. 

Much better results are found, albeit with datasets of 1000, by using statistically based 
agglomerative clustering methods.  For 1000 compounds, the clustering takes approximately one day 
and would scale roughly as the square of the number of compounds.   Since we typically would expect 
to investigate no more than 1/100 as many clusters as original compounds, divisive methods might 
have an advantage because in this approach, clustering starts with one huge cluster, divides clusters 
into tighter ones, and could stop once the target number of clusters was formed. 

At this time, no method other than Jarvis-Patrick is known to the computational chemistry 
community that will group 105 or 106 objects in a time scale of less than a week (Willett et al., 1986; 
Willett, 1987; Whaley and Hodes, 1991).  There are unpublished reports that the divisive Guenoche 
(1991) algorithm classifies 104 compounds overnight on a personal computer once the pairwise 
similarities have been calculated.  However, it seems possible that there may be better ways to 
discover the groups of compounds in a dataset. 

References 
Baum, R.M., 1994, Combinatorial approaches provide fresh leads for medicinal chemistry, Chemical and 
Engineering News (February 7) 20-26. 

Bron, C, and J. Kerbosch, 1973, Algorithm 457.  Finding all cliques of an undirected graph. Commun. ACM 
16:575. 

91 



Cramer III, R.D., D.E. Patterson, and J.D. Bunce, 1988, Comparative molecular field analysis (CoMFA). 1. 
Effect of shape on binding of steroids to carrier proteins, /. Am. Chem. Soc. 110:5959-5967. 

Erickson, J.W., and S.W. Fesik, 1992, Macromolecular X-ray crystallography and NMR as tools for structure- 
based drug design, In Annual Reports in Medicinal Chemistry, Vol. 27, M.C. Vernuti, ed., Academic Press, 
New York, pp. 271-289. 

Frank, I.E., and J.H. Friedman, 1993, A statistical view of some chemometrics regression tools, Technometrics 
35:109-135. 

Gallop, M.A., R.W. Barrett, W.J. Dower, S.P.A. Fodor, and E.M. Gordon, 1994, Applications of 
combinatorial technologies to drug discovery.   1. Background and pep tide combinatorial libraries, /. Medicinal 
Chem. 37:1233-1251. 

Gordon, E.M., R.W. Barrett, W.J. Dower, S.P.A. Fodor, and M.A. Gallop, 1994, Applications of 
combinatorial technologies to drug discovery.  2. Combinatorial organic synthesis, library screening strategies, 
and future directions, /. Medicinal Chem. 37:1387-1401. 

Guenoche, A., P. Hansen, and B. Jaumard, 1991, Efficient algorithms for divisive hierarchical clustering with 
diameter criterion, /. Classification 8:5-30. 

Hodes, L., 1989, Clustering a large number of compounds. 1. Establishing the method on an initial sample, /. 
Chem. Inform. Comput. Sciences 29:66-71. 

Jarvis, R.A., and E.A. Patrick, 1973, Clustering using a similarity measure based on shared nearest neighbors, 
IEEE Trans. Comput. C-22:1025-1034. 

Kubinyi, H., 1993, 3D QSAR in drug design, Theory, Methods, and Applications, ESCOM, Leiden, 759 pp. 

Kuntz, I.D., 1992, Structure-based strategies for drug design and discovery, Science, 257:1078-1082. 

Martin, Y.C., 1992, 3D database searching in drug design, J. Medicinal Chem. 35:2145-2154. 

Martin, Y.C., K.-H. Kim, and C.T. Lin, in press, Comparative molecular field analysis: CoMFA, in Linear 
Free Energy Relationships in Biology, M. Charton, ed. 

Rothstein, S.H., and M.A. Murcko, 1993, GroupBuild:  A fragment-based method for de novo drug design, J. 
Medicinal Chem. 36:1700-1710. 

Science, 1994, Research news: Drug discovery on the assembly line, 264:399-1401. 

Weiniger, D., C. James, and J. Yang, 1994, Daylight Chemical Information Systems, Manual to Version 4.34, 
Daylight Chemical Information Systems, Irvine, Calif. 

Whaley, R., and L. Hodes, 1991, Clustering a large number of compounds. 2. Using the connection machine, 
J. Chem. Inform. Comput. Sciences 31:345-347. 

Willett, P., 1987, Similarity and Clustering in Chemical Information Systems, Research Studies Press, 
Letchworth. 

92 



Willett, P., V. Winterman, and D. Bawden, 1986, Implementation of nonhierarchic cluster analysis methods in 
chemical information systems, /. Chem. Inform. Comput. Sciences 26:109-118. 

Statistical Analyses of Families of Structures 

The diversity of chemical structures is one of the hallmarks of modern experimental chemistry. 
The problems of diversity and similarity are most prevalent in the study of biological molecules for 
which very different sequences—that is, fundamental structures—give rise to molecules that have very 
similar overall three-dimensional structures and often very similar functional properties.  The Human 
Genome Project is devoted to characterizing the myriad of proteins encoded in humans, but a still 
larger universe of proteins exists in other living beings.  Furthermore, it is easy to understand that the 
existing proteins are just a small subset of all possible random heteropolymers.  The same type of 
combinatorial complexity exists for many other classes of molecules.  In nature, we are familiar with 
the complexity of alkaloids or terpenes. 

More and more molecular scientists are trying to understand how to use the information from a 
variety of different molecules to understand the structure and function of a given one.  It is now 
becoming possible, by using combinatorial syntheses in the laboratory, to make 10 million variants of 
a single protein or 10,000 covalently connected frameworks such as those in a natural product. The 
most well known of these techniques is that employed to make catalytic antibodies, but many other 
approaches are possible.  A variety of mathematical problems arise when one tries to make use of 
these resulting longitudinal data about molecular systems. 

For naturally occurring biomolecules, one of the most important approaches is to understand the 
evolutionary relationships between macromolecules.   This study of the evolutionary relationship 
between biomolecules has given rise to a variety of mathematical questions in probability theory and 
sequence analysis.  Biological macromolecules can be related to each other by various similarity 
measures, and at least in simple models of molecular evolution, these similarity measures give rise to 
an ultrametric organization of the proteins.  A good deal of work has gone into developing algorithms 
that take the known sequences and infer from these a parsimonious model of their biological descent. 

Similar analyses based on the three-dimensional structure of molecules also present ongoing 
mathematical problems.  At the moment, the use of evolutionary similarity to infer three-dimensional 
structure is a common and very important algorithm for people who have practical interests in the 
prediction of biomolecular structure.  Use of the theory of spin glasses to characterize random 
heteropolymers has also allowed the phrasing of interesting questions such as the probability in a 
single experiment of obtaining a foldable protein molecule.  This is a question in which the statistics 
of low-lying energy states on the surface and the statistics of sequences must be analyzed jointly and 
related to each other.  Experiments of this type have recently been done and seem to agree in many 
respects with the results of theory, but there are many questions of physicochemical principle and of 
mathematical analysis for this theory. 

An emerging technology is the use of multiple rounds of mutation, recombination, and selection to 
obtain interesting macromolecules or combinatorial covalent structures.  Very little is understood as 
yet about the mathematical constraints on finding molecules in this way, but the mathematics of such 
artificial evolution approaches should be quite challenging.  Understanding the navigational problems 
in a high-dimensional sequence space may also have great relevance to understanding natural 
evolution.  Is it punctuated or is it gradual as many have claimed in the past? Artificial evolution 
approaches may obviate the need to completely understand and design biological macromolecules, but 
there will be a large number of interesting mathematical problems connected with the design of 
efficient artificial evolution experiments. 
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Quantum Monte Carlo Solution of the Schrödinger Equation 

Many-body problems in physics are often treated by a Monte Carlo (MC) approach (e.g., 
Hammersley and Handscomb, 1964; Kalos and Whitlock, 1986).  The Monte Carlo method is 
statistical and draws its name from the famous gambling casinos of Monaco because of the role of 
random numbers or coin tosses in the method. 

Problems handled by Monte Carlo are generally of two types, probabilistic or deterministic, 
depending on whether they are connected with random processes.  In the probabilistic case, the 
simple Monte Carlo approach is to observe the occurrence of random numbers, chosen in a way that 
they directly simulate the physical random processes of the original problem, and to infer the desired 
solution from the behavior of these random numbers.  In the deterministic case, the power of the 
Monte Carlo approach is the capability of carrying out numerical calculations in cases where the 
equations that describe the essence of a problem and its underlying structure are not solvable by 
alternative means.  The underlying structure or formal expression also describes some unrelated 
random process, and therefore the deterministic problem can be solved numerically by a Monte Carlo 
simulation of the corresponding probabilistic problem. 

The essential feature common to all Monte Carlo computations is that at some point one will need 
to substitute for a random variable a corresponding set of values with the statistical properties of the 
random variable.  The values that are substituted are called random numbers.  They are not really 
random, however, because if they were it would be impossible to repeat a particular run of a 
computer program.  An absolute requirement in debugging a computer code is the ability to repeat a 
particular run of the program.  If real random numbers were used, no calculation could be repeated 
exactly, and attempts to check for errors would be extremely difficult.  It is essential that one be able 
to repeat a calculation when program changes are made or when the program is moved to a new 
computer. 

For electronic computation it is desirable to calculate easily by a completely specified rule a 
sequence of numbers as required that will satisfy reasonable statistical tests for randomness for the 
Monte Carlo problem of interest.  Such a sequence is called pseudorandom and clearly cannot pass 
every possible statistical test. 

Most of the pseudorandom number generators now in use are special cases of the relation 
(Heermann, 1986; Kalos and Whitlock, 1986) 

Xn ♦1   ^ a0Xn+ aiXn-l + '"+ "fn-j + b (m°d    P) • 

One initiates the generator by starting with a vector of j + 1 numbers xQ<x1, . . . , x,-.  The generators 
are characterized by a period T that in the best case cannot exceed Pi+i.  The length of r and the 
statistical properties of the pseudorandom sequences depend on the values of a-, b, and P. 

With the choice of ai■,=■ 0,j > 1, and b — 0, one obtains the multiplicative congruential 
generator, 

Xn+1   ~  X'Xn (m°d P) • 

Recent work has shown that a set of parameters X and P can be chosen with confidence to give 
desired statistical properties in many-dimensional spaces (Kalos and Whitlock, 1986).  There are 
many other generators available; the interested reader should consult the references. 

With parallel computers and supercomputers capable of very large calculations, very long 
pseudorandom sequences are necessary.  In addition, there remains the desire to have reproducible 
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runs.  The question of independence of separate sequences to be used in parallel remains a research 
issue. 

Quantum Monte Carlo (QMC), as used here, refers to a set of methods to solve the Schrödinger 
equation (exactly, in two of the three variants listed below) to within a statistical error by random 
walks in the many-dimensional space.  These methods—variational MC, diffusion MC, and Green's- 
function MC—are based on the formal similarity between the Schrödinger equation in imaginary time 
and a multidimensional classical diffusion equation. 

Variational Monte Carlo (VMC) 
For ^T(R) a known approximate (trial) wavefunction, where R is the 3JV set of coordinates of the 

iV-particle system, VMC (Kalos and Whitlock, 1986; Hammond et al., 1994) uses the Metropolis 
algorithm (Hammersley and Handscomb, 1964; Heermann, 1986; Kalos and Whitlock, 1986; 
Hammond et al., 1994) to sample |^T|

2-  Therefore, any expectation value with respect to this trial 
function can be computed including the variational energy of VT.  To begin a calculation, an initial 
distribution of walkers is generated.  In order to create a distribution of \%\2, these walkers take a 
series of Metropolis steps to equilibrate, followed by another series of Metropolis steps at which the 
local energy 

is calculated for each walker; here H is the Hamiltonian.  Averaging the local energy over the 
walkers at the sampling points yields the variational energy, which is an upper bound to the exact 
energy of the ground state.  An alternative strategy is to minimize the variance of the local energies. 
A strength of the VMC method is the capability of treating trial functions that depend explicitly on 
interelectronic coordinates—there is no integral problem associated with the use of trial functions 
containing such coordinate dependence for many-electron systems. 

Diffusion Monte Carlo (DMC) 
If one multiplies the time-dependent Schrödinger equation in imaginary time by % and rewrites it 

in terms of a new probability distribution f(R,t) =   f $(R,t)%(R), one obtains 

dfldt = £D|.V,.(V/-/V;ln|YT|2) - (Eh(R) - Er)f, 

where Dt = #2/2m,-, Eh is the local energy, and ET (the trial energy) represents a constant shift in the 
zero of energy.  At large simulation (imaginary) time, the function $(R,t) tends to the ground state 
wavefunction. 

The algorithm (Hammond et al., 1994) is initiated with a distribution (ensemble) of several 
hundred walkers taken from/(Ä,0) = |¥T(Ä)|2, which is then evolved forward in time after a 
sequence of equilibration steps.  The three terms on the right-hand side then correspond to diffusion 
with diffusion constant Z)„ a drift term associated with the trial function, and a branching term that 
derives this designation from the DMC equation being, in the absence of the first two terms on the 
right-hand side,a first-order kinetic equation.  Because/can, in general, assume both positive and 
negative values, which would preclude the interpretation of/as a probability for fermion systems, 
one alternative is to impose the nodes of the ground state wavefunction ^T on $ so that/is always 
positive.  This is the fixed-node approximation, which can be shown to give an upper bound to the 
ground state energy. 
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After sufficiently long simulation time in which the steady-state solution of the DMC equation has 
been attained, the ground state energy is obtained as the average value of the local energy now 
averaged over the mixed distribution $(R)%(R).  This is an improvement over VMC and associated 
sampling from | ^T |2 because DMC contains information on the exact ground state $ (in the fixed- 
node approximation).  The ground state energy has the zero-variance property of QMC; that is, in the 
limit that ^T approaches <£>, the variance of the MC estimate of the energy approaches zero. 

Green's Function Monte Carlo (GFMC) 
The integral equation form of the Schrödinger equation can also be modeled by a stochastic 

process, which leads immediately to the consideration of Green's functions.  GFMC approaches 
(Kalos and Whitlock, 1986) have been investigated for the time-independent as well as the time- 
dependent Schrödinger equations.  In practice, however, there are only convergent when the Fermi 
energy is close to the Bose energy and the trial function has sufficiently accurate nodes.  New 
directions with GFMC that overcome these limitations still encounter limitations that restrict their 
application, at present, to first-row atoms.  Nevertheless, GFMC remains an area for continued 
scrutiny. 

Research Opportunities 
The various forms of Monte Carlo for solving the Schrödinger equation (VMC, DMC, and 

GFMC) could each be improved by better sampling methods.  Wavefunctions typically used for 
importance sampling often recover at best 80 to 95% of the correlation energy, the energy difference 
between the Hartree-Fock approximation and the nonrelativistic limit, for molecules consisting of 
first-row atoms.  Beyond the first row, computer time dependence on atomic number, which has been 
estimated as za where a = 5.5 to 6.5, is a major limiting factor that has led to the introduction of 
analytical functions to describe inner-shell electrons (i.e., pseudopotentials or effective core 
potentials).  Another area in which improvements are eagerly sought is in methods that go beyond the 
fixed-node approximation.  Currently, these methods are limited to atoms and molecules containing 
no more than 6 to 10 electrons. 
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Nonadiabatic Phenomena1 

The Born-Oppenheimer (BO) adiabatic approximation is the basis of the well-known separation of 
the many-body problem of electronic and nuclear motion into two separate many-body problems.  It is 

2This presentation follows Hirschfelder and Meath (1967). 
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also applied to separate other "fast" and "slow" subsystems including vibrational and rotational modes 
of molecules.  The combination of these approximations leads to the double adiabatic approximation 
that has been applied in the study of solids as well as molecules. 

For most applications, the approximation of separation of electronic and nuclear motion does not 
lead to appreciable error.  For high precision, however, the BO energy has to be corrected for the 
coupling of electronic and nuclear motions.  The coupling is important if, for example, 

• two potential energy surfaces of the same symmetry cross in the BO approximation— correction 
terms prevent such crossings—or are close and more-or-less parallel over a moderate range of 
configuration space; 

• the electronic state of a polyatomic molecule is degenerate for a symmetric arrangement of 
nuclei; coupling leads to Jahn-Teller and Renner-Teller effects; 

• the nuclear velocities are large as in high-energy molecular collisions; 
• the molecule is in a high rotational state and has nonzero electronic angular momentum. 

There are two kinds of correction terms for the coupling of electronic and nuclear motions.  The 
diagonal corrections shift the energy levels.  The nondiagonal corrections produce and broaden the 
natural line width to the energy levels and cause transitions between quantum states.  The energy 
corrected for the diagonal coupling terms is called the adiabatic energy and gives the best possible 
energy curves and surfaces. 

A number of problems arise in the inclusion of nondiagonal corrections.  They occur because of 
divergences in coupling matrix elements in regions where potential energy surfaces approach very 
closely or because the BO electronic basis functions may not be appropriate for the region of close 
approach. 

BO deviations arise for two reasons.  First, coupling terms appear in the kinetic energy when the 
coordinates are transformed from the laboratory-fixed axes to the body-fixed (molecular) axes. 
Second, the Breit-Pauli relativistic corrections to the electrostatic Hamiltonian lead to spin-spin, spin- 
orbit, and other magnetic coupling terms.  The present discussion neglects the latter and focuses on 
the former. 

The Hamiltonian in the laboratory-fixed frame may be written 

tf' = -^[EV? + £ V;2/mJ + U, (21) 

where primes denote the laboratory frame, ma is the mass of the a-th nucleus in units of electron 
mass, and U is the potential energy given by the Coulomb interactions (nuclear, electronic-nuclear, 
and electronic) of all the particles of the system.  Since U is a function only of relative distances 
between the particles, one separates out the center-of-mass motion and is left with 3(n+N) — 3 
relative coordinates for an «-electron and N-nucleus molecular system.  The choice of optimum 
coordinates for polyatomic molecules is not straightforward, and so the focus here, for simplicity, is 
on the diatomic molecule case. Then the Hamiltonian takes the form 

H = He -^/(2^)-i[^ vf/ + 2 £ V,. • Vy] , (22) 
■^     i i<j 

where \x. = ma- mb/(ma + mb) and 
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».-4£*?-5;£*£i*Ei-^. <23> 
1  i i      rai      rbi        '<;   rij K 

Here Za and Zft are the nuclear charges, rai is the distance separating nucleus a from electron i, and /? 
is the distance between nuclei a and b. 

If one assumes that the electronic Schrödinger equation, 

Hefk(r,R) = Ek(R)fk(r,R), (24) 

can be solved exactly for the complete set of eigenfunctions \pk(r,R) and eigenvalues Ek(R), then the 
total Schrödinger equation for nuclear and electronic motions, 

i/T(r,7?) = £¥(/-,/?), (25) 

can be solved by expanding ^ as follows, 

T(r,Ä) = £ 4>k(R)ifrk(r,R). (26) 
it 

Here r represents all the coordinates of the electrons and k is the set of electronic quantum numbers. 
This leads to a set of equations for the functions (j>k(R) that determine the nuclear motion of the 
system, 

[-VÄ
2/(2ji) + Et(R) + EUXR) + En"(R) -VR-E] <Pk(R) 

(27) 

**« 

Here 

where 

^'(V/) = -V(2|i) fifr;(r,R)\2ilrk(r,R)dr, 

i 

and 

V'(*) = -U\xff;(rjl)\fk(rjl)dr. (28) 

An asterisk denotes complex conjugate.  The quantities defined by Equation (28) give rise to velocity- 
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dependent forces on the nuclei.  For real \p(, however, the diagonal term vanishes. 
In practice, Equation (27) is extremely difficult to solve and various approximations to it are 

introduced.  The BO approximation corresponds to neglecting all of the coupling terms.  Equation 
(27) then becomes a Schrödinger equation for nuclear motion, 

[-U&rtVf+EfKi-mMK) = 0. 

In this approximation, the E((R) determined from Equation (24) become the potential energy for the 
nuclear motion. 

The adiabatic approximation corresponds to neglecting all nondiagonal terms in Equation (27), 
which results in a Schrödinger-type equation for nuclear motion, 

[-l/(2^)VÄ
2 + Kc(tf)-£]0//?) =0, 

where the potential for nuclear motion is 

Vt(K) =Et(R)+Eu \R). 

The diagonal elements En'{R) are effectively a correction to the potential energy due to the coupling 
between the electronic and nuclear motions. 

The adiabatic approximation gives the best potential energy function.   As defined here the 
adiabatic approximation to the energy is an upper bound to the true energy since it can be expressed 
as the expectation value to the correct Hamiltonian for the molecule evaluated with an approximate 
wave function. 

The nonadiabatic approximation corresponds to consideration of the nondiagonal as well as the 
diagonal elements Elk'{R).  This is extremely difficult to carry out but has been accomplished for H2 

by using variational basis set (Kolos and Wolniewicz, 1960) and quantum Monte Carlo approaches 
(Traynor et al., 1991; see also Ceperly and Alder, 1987). 

For processes occurring in excited states, it appears clear that for molecules more complicated than 
H2 alternative approaches must be found.  This is an area demanding fundamental improvements if 
breakthroughs are to be achieved. 
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Evaluation of Integrals with Highly Oscillatory Integrands: 
Quantum Dynamics with Path Integrals 

The solutions of many quantum dynamics problems can be formulated in terms of path integrals. 
Indeed, there is a formulation of quantum mechanics (less familiar than the Schrödinger wave function 
formulation, the Heisenberg matrix formulation, or the Dirac Hubert space formulation) based 
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entirely on the use of path integrals (Feynman and Hibbs, 1965).  Path integrals are closely related to 
some of the mathematical approaches used to describe classical Brownian motion.  A prototypical 
mathematical problem and a class of methods for solving it are described first; then a more general 
discussion of the problem is presented. 

Prototypical Problem 
This discussion of the prototypical problem follows closely the discussion of Doll et al. (1988). 

Consider the integral 1(f) = | dx p(x) e'm where t is a real parameter corresponding to the time, x is 
the set of coordinates for a many-dimensional space, and p{x) and f(x) are functions in that space. 
The function p(x) is positive semidefinite and can without loss of generality be taken as normalized to 
unity.  Thus, it can be regarded as a probability density in the space.  The function f(x) is real (for 
this prototype problem). 

For problems of interest, the dimensionality of the space can be very large (from 1 to a hundred to 
thousands), and the complexity of the function precludes analytic integration.  For any particular x, 
p(x) and/(jc) can be evaluated numerically, and typically there is much more computation required for 
the evaluation of p than/. 

The range of the x integration may be bounded, but more often it is unbounded.  For typical 
problems of interest, however, integrals of the form \ dx p(x) <f(x))n exist for all positive integers n. 

The goal is usually to evaluate the integral for a specific value of t (or for a set of values of f) by 
making use of calculated values of p and/at appropriately chosen points and to estimate the accuracy 
of the answer.  In some cases, the desired quantity is the area under the function 

r<itl(t), 
J   — 00 

or perhaps the Fourier transform 

f°°dtl(t) 
J   —00 

emt. 

Techniques for evaluation of such integrals of / would be extremely worthwhile, but this discussion 
focuses on the evaluation of I(t) for specific values of t. 

Discussion of the Problem 
A standard way of attacking this problem would be a Monte Carlo integration scheme in which 

points x are generated with a probability distribution of p(x) and/is evaluated at these points.  Then 

where N points are generated and xn is the nth point.  For small values of t, this can be a practical 
procedure.  For large values of t, however, this procedure is extremely inefficient because of the 
large amount of cancellation among the various terms. 

If t is large and/is not a constant, it is clear that the integrand is highly oscillatory; thus, small 
regions of space where/is varying will tend to contribute small net amounts to the integrand for large 
t.  Nevertheless, individual points in such a region will contribute to the sum an exponential whose 
magnitude is unity.  Cancellation among the various terms will give an accurate and small answer 
only when each such small region is sampled many times in the Monte Carlo evaluation. 
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The regions of the space in which df(x)/dx is zero or small will make the major contributions to 
the integral for large t.  Thus, a scheme that concentrates the Monte Carlo sampling at and near such 
regions would be desirable.  Such schemes are usually called "stationary-phase" methods, since at 
such points the phase of the exponential is stationary. 

Stationary-Phase Monte Carlo Methods 
A variety of sampling methods have been developed that focus on the stationary-phase points 

(Doll, 1984; Filinov, 1986; Doll et al., 1988).  Here the approach of Doll et al. (1988), which is 
similar to the others, is outlined. 

The integral of interest can be rewritten identically as 

I(t) = [dxp(x)D(x,f)eim, <29> 

where 

J n(x) P(x) 

and P(y) is an arbitrary normalized probability distribution.  (This result is exact if the range of 
integration is over all positive and negative values of the integration variables.) The function P(y) is 
typically chosen to be a Gaussian distribution centered at v = 0. D(x,t) is called a "damping 
function," because for such a typical choice of P(y), D(x,t) is largest where/is stationary and hence 
it damps the integrand in Equation (29) away from the stationary points. 

An evaluation of D(x,t) poses the same problems as evaluation of I(t).  However, for specific 
choices of P, various approximations for D can be constructed and used as the basis for a more 
efficient sampling method for the evaluation of /.  For example, if P(y) is a narrow Gaussian function 
with a maximum at y = 0, then for large t an approximation can be constructed by replacing p(x - 
y)/p(x) by unity and performing a Taylor expansion of the exponent.  One then obtains an 
approximation for D called the "first-order gradient approximation": 

D(x,t) * D0(x,t) = exp[-(e*f(x))2/2)]. 

Then 

I(t) « fdxp(x)D0(x,t)e^xK 

This integral, which is the major contribution to the correct answer, is generally more amenable to 
evaluation by sampling, in this case by using p(x)D0(x,t) as the probability distribution.  A complete 
method would require the development of procedures to estimate the correction terms that must be 
added on the right to make this an equality (see Doll et al., 1988, for additional details).  The 
essential idea of these procedures is that use of a precise approximate formula for D automatically 
includes much of the cancellation responsible for decreasing the value of /. 

The stationary-phase Monte Carlo methods provide some useful ideas for formulating tractable 
sampling methods for solving some problems of interest.  It would be worthwhile to develop better 
versions of these methods both for I(t) and for its Fourier transform. 
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Alternative Approaches to the Prototype Problem 
In many cases of interest, the function I(t) is known to be an analytic function of t at the origin. 

This knowledge may be of use in developing approximate evaluation techniques based on analytic 
continuation.  Most analytic continuation methods are based on a more detailed formulation of the 
problem of interest that is tied closely to the physical nature of the problem.  But even for this simple 
formulation of the prototype problem, one might ask whether the fact that 1(f) is an analytic function 
of (complex) t for some region that includes the origin suggests any alternate ways of calculating I(t) 
accurately. 

For example, one might consider the use of Pade approximants (i.e., ratios of polynomials; Baker 
and Gammel, 1970), which are often used for approximate analytical continuation of analytic 
functions, especially meromorphic functions.  Expanding the exponential in I(t) gives 

I(t) =EW" ajnl, 

where 

«„ = /<frp(jt)(/(*))\ 

The first few Taylor series coefficients can then be estimated by sampling on p(x) in the usual way, 
but the difficulty of making accurate estimates grows as n increases.  These coefficients might then be 
used to fit I(t) with a Pade approximant. 

This approach raises a number of mathematical questions. 

• Are there any sampling techniques that would be especially effective in evaluating the 
coefficients for large n? 

• Does the statistical error in the an make it inappropriate to use Pade approximants to fit the 
function? Are there better alternatives? 

• If the Pade approximant method is valid, how is the uncertainty in I(t) related to the statistical 
uncertainty of the individual a„? 

• Does the fact that the integral expression for I(t) is dominated by stationary points in the x 
space give any insights into how to evaluate an or how to construct appropriate Pade 
approximants? 

Other Formulations and Solutions of the Basic Problem 
The nature and dimensionality of the x space and the specific form of the p(x) function are 

determined by the nature of the quantum mechanical problem to be solved.  In general, however, the 
coordinates of x are Cartesian (or other) coordinates for a mechanical system.  Similarly, the form of 
the function f(x) is determined by the nature of the problem.  Various analytic continuation techniques 
have been applied to attack specific special cases of the prototype problem.  The question then arises 
as to whether these are isolated solutions of specific problems or special cases of an underlying, not 
yet discovered, general method for solving problems of this type.  This is not the place to delve into 
the details of specific problems; instead, some of the relevant mathematical principles involved are 
highlighted.  For additional discussion of related problems, the reader is referred to Doll (1984), 
Makri (1991), and Wolynes (1987). 
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Analytic Continuation in Time.  In some problems, the goal is to evaluate a function of time t of the 
form 

[dxe**>*fLx) 
h(t) = J . (3°) 

fdxe**-* 

More generally, there is a function of a complex variable z of the form 

H(z) = A  (31) 
fdxegM 

that is analytic in a region including the positive real axis and part of the positive imaginary axis, and 
for which h(t) = limf^+ H(e + it).  The function g(z,x) is an analytic function of all its arguments, 
mdf(x) is real (for real x).  In many cases, the formulation in Equation (31) is required to make the 
problem well defined, because g(it,x) is purely imaginary and the integrals in Equation (30) are not 
absolutely convergent (for an infinite range of integration). 

The calculation of H(z) for real z presents a tractable sampling problem because g(z,x) is real for 
real z. Then, sampling a set of points distributed with a probability density proportional to g(z,x) and 
calculating/at those points allow H to be calculated for real z. In fact, as long as z has a positive 
real part, the problem of evaluating H can be converted to a well-defined sampling problem, because 
Ngfax) -> - oo for large positive and negative values of the integration variables.  Then dig(z,x) can 
be used as a probability distribution, and the right side of Equation (31) can be expressed as a ratio of 
two averages over this distribution: 

H(z) 

Stefc*) 

fdxe*gMeagMfix) 

fdxe«8fc*)g«8fc*)/(jc) lfdxe 

(dx e ^sk*) e,SSgfcj:) I fdxe Äg(z,ac) 

For complex values of z, however, this sampling problem may become intractable because the 
quantities to be averaged, exp [i$g(z,x)]f(x) and expD'Sgfcx)], are complex and oscillatory.  This 
can pose the same difficulty as that discussed for the prototypical problem above.  This difficulty 
becomes acute in the limit that z becomes purely imaginary, because the "probability distribution 
function" approaches unity and is not normalizable. 

A variety of analytic continuation methods have been used to solve problems of this type.  One 
strategy is to perform tractable sampling calculations to obtain H(z) for real z and then use Pade 
approximant techniques to estimate H as z approaches the imaginary axis (Miller et al., 1983; 
Thirumalai and Berne, 1983; Jacquet and Miller, 1985; Yamashita and Miller, 1985; Makri and 
Miller, 1989).  These techniques motivate the same sorts of mathematical questions as those listed 
above for a different approach to analytic continuation. 
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Deformation of the Integration Contours.  Another technique has been used in certain situations in 
which the integrand is an analytic function of all the variables in x.  The integration is from - oo to 
oo along the real line for each of these variables.  Deformation of these contours of integration and 
evaluation of the resulting integrals by sampling methods can be an effective technique if the 
deformed contours come near or pass through stationary-phase points of the integrand (Chang and 
Miller, 1987; Mak and Chandler, 1991).  In one situation in which this was used (Mak and Chandler, 
1991), the contour was described by a set of parameters that were varied during the calculation to 
maximize some measure of the success of the sampling process being used to calculate the integral. 

Most General Formulation. Perhaps the most general formulation of these problems is the following 
one. Given a set of complex variables z„ ..., zn and a function of these variables g(z„..., zj that is an 
analytic function of all these variables for a domain that includes the real axis for each of them, calculate 
the following complex function of m complex variables: 

H(zv...,zm) = fdzm+l [dzm+2... fdzng(zv...,zn), 

The method should work for highly oscillatory functions and should take into account the fact that each 
evaluation of g and the location of stationary-phase points are expensive. Here z,,. . . , zm are analogous 
to the t in previous examples, and zm+u ..., z„ are the integration variables. 
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Fast Algebraic Transformation Methods 

Numerous problems require rapid evaluation of a product of a matrix and a vector, 

n 

y.- = EVy       vi = l,...,n. 

This arises in the transformation from one basis in a linear space to another.  If computed as written, 
this transformation computes the n values of the transform in an amount of work proportional to n2. 
However, there are both exact and approximate methods that can compute such a transform much 
more efficiently in a variety of cases. 

One of the most famous is the Fourier transform, which is frequently used to transform from 
physical space to frequency space.  The fast Fourier transform (FFT) is a well-known algorithm for 
computing the n values of the transform in an amount of work proportional to n log2 n.  The FFT is 
an exact method, not an approximation:   in exact arithmetic, it computes the sum exactly by a 
reordering of the summands.   Although this algorithm is remarkably successful, recent advances have 
been made by further exploiting its algebraic structure. 

Efficient implementation of large multidimensional FFTs on modern computers is memory bound. 
This can be seen from the following timings for a Sun Sparestation 10 performing an FFT on a two- 
dimensional image of size 2K by 2K words using the standard FFT algorithm.  When carried out on a 
machine with 64 megabytes of random access memory (RAM), the algorithm executes in 66 seconds. 
However, on a machine with only 32 megabytes of RAM, the algorithm takes more than two hours, 
due to the fact that the 2K by 2K dataset cannot fit in RAM and data must be moved in and out of 
memory during the calculation.  Recently, J.R. Johnson and R.W. Johnson (private communication, 
June 1994) reported that a truly multidimensional version of the FFT algorithm has been developed 
that accomplishes the same computation in only 75 seconds on a 32-megabyte machine and 47 
seconds on a 64-megabyte machine. 

A recent example of approximate methods is the fast multipole expansion technique, which takes 
advantage of special properties of the matrix (ay).  This technique has been successfully applied to 
evaluate Coulombic potentials in molecular dynamics simulations (Ding et al., 1992).  This idea has 
been extended (Draghicescu, 1994) to a broad class of matrices using a general approximation 
procedure.  These more general techniques would apply directly to the non-Coulombic potentials 
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arising in periodic problems through the use of Ewald sums. 
A closely related algebraic operation occurs in the evaluation of multilinear forms such as those 

that appear in density functional methods for calculating ground electronic states in quantum 
electronic structures.  A bilinear form B((z), (x)) can always be written in terms of a matrix: 

B({z),(x)) = Y.zflfy 

As written, the bilinear form would require 0(n2) operations to evaluate.  It can be computed instead 
by using the intermediate vector (yj defined above, calculation of which requires 0(ri) operations, as 

B((z),(x)) ^zjr 

This way of evaluating a bilinear form can greatly reduce overall computation time, depending on 
how efficiently y, can be computed. 

In density functional methods for calculating ground electronic states in quantum electronic 
structures, it is desired to approximate multilinear forms including integrals of the form 

JJ       r-rl 

where 

JC-JC 

n 

p(*) = E<W*)*/>)    and    <J>,(x) = x"'exp[-Y,|*-*,|]2. 

(Here, /t, denotes a multi-index, say (p„ qit r,), so that    x^ = x[t-xV-xT' 

In particular, such a representation arises via an expansion 

n 

X
a(x) = E cftyx) and P(JC) = E lxa(*)|2- 

i = l a = l 

Hence, 

m 

cv = E(OV- 
0=1 

The evaluation of p at a single point provides an example of the alternatives for evaluating a bilinear 
form.  Using the representation involving the matrix (C,-,) requires n2 operations, whereas the 
expression involving the x's requires m-n operations.  If m < n, the latter approach will be more 
efficient. 

The above integral can be viewed as a quadrilinear form involving the coefficients c".   Multilinear 
forms can be evaluated in a variety of ways. It is tempting to represent them in terms of a 
precomputed tensor (a matrix for a bilinear form).  Recently, Bagheri et al. (1994) have observed that 
it can be more efficient, in both time and memory, not to precompute expressions. 
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The original integral can be written 

p,    ,|2   dxdx' //EE^(*)l2-EEoV 
JJ 0 = 1   1 = 1 p = i ; = i 

By using a suitable quadrature rule, this could be approximated via 

£E w- E lE'/WE lEc/*/"l2- 
l    V o = i   i = i ß = i ; = i 

Let Q = tf denote the total number of quadrature points; the quadrature approximation can be 
calculated in an amount of work proportional to Qnm. 

On the other hand, the original integral can be expressed as 

m      n 
ß-»*    Pi/.VA   /V»   dxdx //E E (O'^^'iwE E (c/)*c;*/*r*^)- 

o = ur=i P = i;V"=i JC-JC 
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where computation of the intermediate quantities 
m 

% = E (OV 
0=1 

has been introduced, which adds only 0(n2m) work.  The summation over i, i'J, f requires an 
amount of work and storage proportional to n4to evaluate.  It would be more efficient to use the 
former technique if the quadrature could be done sufficiently accurately with Q < n3/m points. 

The integral form involving p can be written as 

[rmp£idxdx' = [p(x)KP(x)dx, 
J •>     \x-x I J 

where K is an operator defined by 

Km - f-pä-dx 
J   \x-x 

If one thinks of an integral simply as a very large summation, the analogy between the integral form 
and the original bilinear form is apparent.  With a rapid way to evaluate K, there might be a faster 
way to evaluate the bilinear form.  (Alternative ways to evaluate p, based on similar considerations, 
have already been discussed.) 

Observe that K is simply the solution operator for Poisson's equation 
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With this in mind, there are numerous ways to evaluate the action of K approximately, using discrete 
methods for approximating the solution of Poisson's equation.  For example, the multigrid method 
can be used to do this in a very efficient way.  The analogy with quadrature suggests using a grid 
with q points and solving Poisson's equation with a multigrid method in O(q) work.  Then the 
complete evaluation could be done in O(qmn) work.  This potentially would be faster than direct 
evaluation of the integrals. 
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5 
CULTURAL ISSUES AND 

BARRIERS TO INTERDISCIPLINARY WORK 

The disparate natures of the fields of mathematics and chemistry have led to quite different 
training frameworks, which in turn continuously influence and are influenced by the research styles 
and practices that are most common in the two communities.  Both fields are highly heterogeneous, 
containing many distinct research subfields, each with its own style, technical language, and point of 
view.  While sweeping generalities are consequently inaccurate, broad stylistic differences can be 
identified in the ways in which mathematicians and chemists think, approach problems, and interact 
with their own and other communities.  This chapter attempts to identify specific impediments to 
interactions between mathematics and chemistry, beyond the general factors affecting interdisciplinary 
research (see National Research Council and Institute of Medicine, 1990, for example). 

Motivation and Connections 

Many of the problems that interest and drive computational/theoretical chemists are practical 
(chemical syntheses, understanding of structure-function relationships in macromolecules, drug 
design, and so forth).  To investigate these problems, chemists must build theories and perform 
numerical simulations to aid in understanding phenomena that can potentially be verified by 
experiment or yield new (predictive) data.  The importance of mathematics in chemistry is revealed 
by the success of chemists in developing effective algorithms not only for specialized problems in 
chemistry, but also for generic mathematical problems—for example, evaluating integrals, calculating 
matrix eigenvalues, storing and compressing data, finding multidimensional optima and stationary 
points, and generating numerical solutions to the one-dimensional Schrödinger equation. 

The key role of mathematics in computational chemistry highlights an anomaly:  although 
theoretical chemists understand sophisticated mathematics and make heavy use of the mathematical 
literature, they have typically not involved mathematicians directly in either the development of 
models or algorithms or the derivation of formal properties of equations and solutions.  In fact, 
theoretical chemists have become accustomed to self-reliance in mathematics.  To date, this system 
has worked because most leading computational chemists have significantly more training in 
mathematics than the minimum recommended today for an American chemist (see Box 5.1). 

By contrast to the situation in chemistry, the motivation for studying problems in much of pure 
mathematics does not depend on any connection to an application.  Mathematical problems are often 
studied because of their inherent beauty, richness, and depth, without considering utility or relevance 
in any time frame.  Even when addressing real-world applications, mathematicians tend to view 
problems as generic rather than specific. 

In particular, "real" problems, whether from the biological or physical sciences, criminology, or 
cryptography, are almost always posed incompletely in a strictly mathematical sense.  The 
transformation of a real-world problem into a tractable mathematical form involves increasing levels 
of abstraction and assumption; the physical terms are defined in a mathematical framework, and 
various components of the problem may be removed or idealized to build a model that emphasizes 
what are believed to be the most crucial features. 
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At its best—which is usually when the model building is done collaboratively, drawing on the 
particular insights and strengths of both mathematical and chemical scientists—this diagnostic 
approach is extremely valuable, leading to both theoretical and numerical understanding of the model, 
which can then return both quantitative information and conceptual understanding about the original 
physical problem.  Indeed, carefully designed models can suggest and explain properties that are 
counterintuitive or unexpected to the problem posers themselves.  An example is found in 
macroscopic models of supercoiled DNA, in which higher buckling catastrophes, as extensions to 
elasticity theory, were recently found.  Furthermore, analysis of mathematical models can indicate 
directions for additional physical and numerical experimentation, as well as for extensions to the 
model.  A potentially negative effect of mathematical abstraction, however, is that the theoretical 
formulation may lose its relevance to the original application that motivated it. 

Effects of Disciplinary Boundaries 

Beyond the "cultural" differences just described, attempts to build collaborations between 
mathematicians and chemists encounter boundaries imposed within most universities as well as within 
other structures in which disciplinary divisions are strong.  These borders are especially difficult to 
cross early in a scientist's career, ironically when the potential for interdisciplinary work may be 
greatest because of the appeal of "new frontiers."  Institutional practices influence the style of work 
that is valued (and hence often pursued) in each discipline, as well as the level of regular interaction 
and communication.   Since many computational chemists and mathematicians are faculty members at 
research universities, both fields are affected by the value system of academia, in which recognition 
(promotion and tenure) requires a record of individual accomplishment judged as outstanding by one's 
peers.  During the process of creating a portfolio of publications, any perceived dilution of a faculty 
member's personal contribution through collaborations may be seen as undesirable.  This 
discouragement of collaborative work early in one's career applies to both mathematics and 
chemistry, although chemists have a strong countervailing tradition of working in groups. 

For mathematicians, the potential career damage of collaboration rises when it involves work in a 
field seen as peripheral to mathematics.  In some instances, interdisciplinary work may be regarded 
by one's mathematical colleagues as "not real mathematics" or as less valuable than traditional 
mathematics. Most academic mathematicians would agree that it is difficult to obtain accurate and 
convincing evaluations of "interdisciplinary" work (meaning work that involves significant 
contributions from other sciences) and research in nontraditional areas of mathematics.   In this 
connection, there is a recent report on the recognition and reward system in the mathematical sciences 
(Joint Policy Board for Mathematics, 1994).  Such issues are particularly worrying for junior 
mathematicians, since it would be unusual for nonmathematicians to be asked for help in a tenure or 
promotion evaluation; mathematics departments might well be reluctant to rely on outsiders for 
judgments and decisions viewed as a departmental prerogative. Another related issue is the value 
attached to work in which an existing body of mathematics is applied to another scientific problem 
area; even if the impact is great and the work represents a significant scientific advance, it is not 
"new mathematics," and hence may be accorded little weight in an evaluation of research 
contributions. 

Because of the tendency to preserve and protect departmental boundaries, mathematics departments 
are ill-equipped to cope with questions that inevitably arise if mathematicians become seriously 
interested in interdisciplinary problems.  For example, if a young mathematician is hired as a 
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BOX 5.1 American Chemical Society Curriculum Standards for Mathematical Course Work 

"Students should emerge from an ACS-approved program in chemistry with: 

• A firm foundation in the fundamentals and applications of calculus, including knowledge of 
differential equations and proficiency with partial derivatives. 

• An understanding of the basic principles of linear algebra and practical knowledge of statistics 
with applications to such problems as experimental design, validation of data, and optimization 
procedures. 

• Experience with computers, including programming, numerical and non-numerical algorithms, 
simulations, data acquisition, and use of databases for information handling and retrieval." 

SOURCE:   Undergraduate Professional Education in Chemistry:  Guidelines and Evaluation 
Procedures, American Chemical Society, Washington, D.C., 1992, p. 11. 

numerical analyst and subsequently becomes interested in chemical statistical mechanics, should this 
be viewed as a loss or a gain? 

For academic chemistry departments, analogous principles of departmental autonomy can affect 
chemists seeking to work with mathematicians.  Because theoretical/computational chemists must 
often demonstrate the applications of their work to experimental areas of chemistry, fundamental work 
of a mathematical nature—for example, algorithm development or identification of problem features 
amenable to mathematical attack—may be undervalued.  On balance, chemistry departments have 
more experience in evaluating multidisciplinary research, soliciting judgments as needed from a 
variety of scientists both inside and outside the department.  A further positive effect on 
interdisciplinary work is that chemistry departments tend to value research that has a significant 
impact on thinking, research, and practice in chemistry and other areas. 

For both fields, the difficulty of interdisciplinary collaboration is exacerbated by the lack of a 
well-established network of contacts between mathematicians and chemists.  On most university 
campuses, chemistry and mathematics departments are physically separate, so casual daily contact 
does not occur.  An effort is typically required for faculty to attend all the seminars in their own 
department, let alone in other departments.  This reality aggravates the difficulty not only of initiating 
a collaboration, but also of developing an appreciation of the other discipline's challenges.  Faculty 
members are not immune to misperceptions and stereotypes:  chemists may regard mathematicians as 
unapproachable or uninterested in chemistry problems; mathematicians may not realize that chemistry 
problems contain interesting and novel mathematics. 

There are, however, exceptions.  For instance, in the United Kingdom there is a long fruitful 
history of productive mathematical research being initiated by theoretical scientists ("natural 
philosophers") employed as faculty members of mathematics departments.  This goes back to Newton, 
but the tradition continues to modern times.  D.R. Hartree and P.A.M. Dirac are recent examples at 
Cambridge, and C.A. Coulson spent most of his career as a professor of mathematics at Oxford. 
Some departments in the United States also have established atmospheres that are conducive to 
collaborative work. 

Outside of academia (e.g., pharmaceutical companies), cross-disciplinary work between chemists 
and mathematicians has succeeded because the problems of disciplinary boundaries are less pervasive 
in many instances, and team efforts are often the norm.  Issues of tenure, grants, and promotion are 
nonexistent or less important.  These settings should provide models for collaborative research. 
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Effects of the Curriculum 

The disparate natures of mathematics and chemistry have led to different training frameworks, 
which in turn continuously influence and are influenced by the research style and practices in the two 
fields.  The typical curricula encountered by students of chemistry and mathematics, both 
undergraduate and graduate, do not help to decrease the gaps described above. 

In mathematics, basic courses rarely involve exposure to the physical "roots" of problems; 
mathematicians study idealized problems as exemplars, not for details of the real-world problem.  Part 
of the gap specifically between mathematics and chemistry can be explained by long-standing 
pedagogical practices in mathematics.  Much of classical applied mathematics is based on 
constructions associated with mechanics and physics:  every student of mathematics studies the heat 
equation, elastic rods, electrical networks, and fluid flow.  However, no problems explicitly 
associated with chemistry are widely taught to or recognized by mathematicians. 

There is little time or incentive for mathematics students to learn chemistry at a substantive level, 
let alone to study interesting chemistry problems.  At the undergraduate level, some mathematics 
curricula require courses in a physical science, but these are more often in physics than chemistry. 
Although undergraduate mathematicians sometimes take freshman chemistry (frequently a descriptive 
course), they are unlikely to study physical or organic chemistry.  Graduate students in mathematics 
do not typically take many courses outside their own department and hence have no convenient 
mechanism for learning about mathematical problems in chemistry. 

Education of chemists currently involves little exposure to advanced concepts in modern 
mathematics (see Box 5.1).  Undergraduate chemists take calculus and (perhaps) ordinary differential 
equations, linear algebra, or numerical methods, but seldom study abstract algebra, differential 
geometry, numerical analysis, partial differential equations, probability, or topology.  Graduate 
students in chemistry rarely take courses in mathematics departments.  Some chemists believe that 
undergraduate chemistry courses do not require high-level mathematics and prefer instead to build 
chemical intuition by descriptive methods. For chemistry students and faculty interested in learning 
modern mathematics, the mathematics curriculum is structured like a tree, with courses of potential 
interest to chemists at the end of a very long branch of prerequisites; the effect is to discourage 
chemists from obtaining any knowledge of advanced topics. 

Language Differences 

Language barriers ranging from conspicuous to subtle must be overcome by anyone who wishes to 
pursue interdisciplinary work between mathematics and chemistry.  At the most obvious level, 
specialization and the internal communication requirements of mathematics and chemistry have 
created two technical languages.  Thus, fundamental concepts that occur in only one field need to be 
defined either in the technical language of the other or in a common natural language.  Mathematical 
examples include Pisot numbers, ambient isotropy, and wavelets; chemical examples include ligand, 
pharmacophore, and racemate. 

Within mathematics, each research subdiscipline continually refines concepts and introduces new 
technical jargon, making it very difficult even for mathematicians in slightly different research areas 
to communicate with each other.  Similar language problems exist in chemistry, though perhaps to a 
lesser degree.  On the mathematical side, the problem is compounded by preferences for an 
abbreviated writing style.  The "abstract minimalism" approach to writing taken in much of the 
mathematics literature can make graduate texts and research papers in mathematics almost 
impenetrable except to the most determined readers. 
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BOX 5.2 Information Sources About Theoretical/Computational Chemistry 

For a mathematician who wants to get involved with theoretical and computational chemistry, the 
best source of information should be the chemists at his or her own institution or research center. 
The American Chemical Society (ACS) publishes a directory (Directory of Graduate Research) that 
lists the research interests and recent publications of academic chemists, if one wishes to look further 
afield.  Those mathematical scientists who have established productive collaborative or 
interdisciplinary lines of research often observe that one must be a good listener and be willing to 
devote time and energy to learning nuances of language and concepts. 

There are a number of printed reviews available.  For molecular modeling, the book series 
Reviews in Computational Chemistry (D. Boyd and K. Lipkowitz, eds., VCH Publishers, New 
York), gives a good overview of the field.  Also, a visit to the exposition at an ACS national 
meeting (held twice a year) will give a feeling for the large number of software vendors in this field, 
the type of software available, and the types of problems of interest to chemists. The November 
1993 issue of Chemical Reviews was also devoted to this subject.  A variety of approaches to 
computer-based drug design are discussed in the series Comprehensive Medicinal Chemistry 
(Pergamon Press, Oxford). 

For electronic structure problems, the literature is very scattered.  The book series Advances in 
Quantum Chemistry reviews the more mathematical aspects of the field along with some very applied 
results.  The July/August 1991 issue of Chemical Reviews contained reviews on a wide range of 
applications.  There is unfortunately no comprehensive review of the algorithms involved in popular 
programs, although the user's guides to GAUSSIAN, MELD, and HONDO list many of the papers 
on which these programs are based.  Also, the Modern Techniques in Computational Chemistry 
reports (E. Clementi, ed., ESCOM Science Publishers, The Netherlands) discuss many algorithms. 
The book series Relativistic and Electron Correlation Effects in Molecules and Solids (G.L. Malli, 
ed., Plenum Press, New York) and the series Methods in Computational Molecular Physics (G.H.F. 
Diercksen and S. Wilson, eds., Reidel Publishing, Dordrecht) also contain several volumes devoted 
to methods for quantum chemistry.  The annual "Sanibel" meeting organized by the Quantum 
Theory Project at the University of Florida (and now held at St. Augustine, Florida) is a good place 
to meet quantum chemists.  The papers from that meeting are published annually in a special 
symposium series from the International Journal of Quantum Chemistry. 

An excellent discussion of the molecular dynamics method, Monte Carlo calculations, and related 
methods for computer simulation studies of materials is contained in Computer Simulation of Liquids 
(M.P. Allen and D.J. Tildesley, Oxford University Press, 1987).  This monograph is a useful 
resource for learning about the theory of such simulations as well as the algorithms used in research. 

Finally, the Computational Chemistry List is a very active electronic clearinghouse for 
information on that subject.  Interested readers may subscribe by sending their name, affiliation, and 
electronic mail address to chemistry-request@osc.edu. 

In addition to separate sets of terminology, mathematicians and chemists face several varieties of 
linguistic confusion. Similar concepts in both disciplines are sometimes denoted by different words. 
For example, a (nontrivial) "link" to a mathematician is a collection of elastic circles that are mutually 
entangled and cannot be separated spatially into subcollections; to a chemist, a "catenane" (from the 
Latin "catena" or chain) is a collection of circular molecules held together by topological bonds, not 
by chemical bonds. Mathematics invokes the concept of graph isomorphism type, whereas chemists 
speak of connectivity of the molecular graph. 

At the other extreme, identical technical names may be used by the two disciplines for different 
concepts or for concepts that are similar but vary in precision.  For example, the term "topology" is 
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BOX 5.3 Information Sources About the Mathematical Sciences 

Journals and Newsletters 
• Ada Numerica contains an annual review article on important developments in numerical 

analysis. 
• Bulletin of the Institute of Mathematical Statistics contains information on meetings and articles 

on items of current interest in statistics. 
• Mathematical Reviews contains short reviews of articles on a wide spectrum of mathematical 

topics. 
• Proceedings of the International Congress of Mathematicians is published every four years and 

contains invited survey articles by leading mathematicians on recent mathematical progress. 
• Notices of the American Mathematical Society contains information on meetings and articles 

on items of current interest in core mathematics. 
• SIAM News is the news journal of the Society for Industrial and Applied Mathematics, 

containing information on meetings and items of current interest in applied and applicable 
mathematics. 

• SIAM Review contains technical review papers on subjects in applied and numerical 
mathematics. 

Electronic Information 
• e-MATH is the electronic information connection to the American Mathematical Society. 

Information is available on meetings, membership, electronic sources of mathematics information, 
etc.  Telnet e-math.ams.org; login and password are both "e-mafh" (lower case). 

• NA DIGEST is a numerical analysis electronic newsletter; for information, send e-mail to 
na.help@na-net.ornl.gov. 

• NETLIB is a database of public-domain computer programs with e-mail address 
netlib@ornl.gov. 

used in science as a catchall word describing shape phenomena, but it has an exact technical meaning 
in mathematics.  The word "homotopic" can refer to deformation of paths in mathematics and to 
interconvertible protons in nuclear magnetic resonance (NMR) spectroscopy. 

Toward a Fruitful Collaboration 

Because research inherently moves into the unknown, there is no way to predict reliably which 
areas of mathematics and chemistry might work together effectively.  Interactions between 
computational chemists and computational mathematicians are perhaps the most obviously rewarding 
today for addressing large-scale computational problems that occur in quantum chemistry, molecular 
mechanics, and molecular dynamics; these areas seem promising for serious collaborations since 
progress is likely to be made only by combining significant expertise in chemistry, mathematics, and 
computer science.  However, the ranges of opportunity and success stories are very broad (see 
Chapters 3 and 4 of this report), and fruitful interactions may emerge between chemists and 
mathematicians in any subfield. 

The ideal interdisciplinary collaboration often begins with personal contacts between two or more 
scientists who share an interest in a particular problem. Just as the experimental chemist might tend 
to approach the theoretical/computational chemist for assistance in certain areas, it is perhaps more 
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common for a chemist to initiate a mathematics-chemistry collaboration.  Recently, however, there 
has been an increasing emphasis on involvement by mathematical scientists in "grand challenge" 
problems, and some applied mathematicians have actively sought connections with chemistry. 

Once a contact has been initiated, the success of a collaboration depends on a strong sense of 
mutual respect and benefit among the participants.  These feelings are essential so that each partner is 
willing to learn new science as needed (e.g., protein chemistry for the mathematician, optimization 
theory for the chemist) and to adapt to a somewhat different style than he or she is accustomed to, 
welcoming a combination of theory, computation, and physical intuition toward solution of a problem. 
Such a synergistic process allows an "evolution" of solutions that can progressively address more of 
the complexity of the realistic problem and incorporate new physical data as they become available. 
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6 
CONCLUSIONS AND RECOMMENDATIONS 

The committee has examined evidence supplied to it in the form of prior reports, expert testimony 
at its meetings, selected studies of the scientific literature, and personal contacts in the mathematical 
sciences and chemistry communities.  As a result of these investigations and its collective evaluation 
of the available information, the committee has reached the following conclusions. 

• Several notable "success stories" can be identified, illustrating the value of interdisciplinary 
stimulation and synergistic research collaboration involving cooperation between the mathematical 
sciences and the theoretical/computational chemistry communities. 

• Many opportunities appear to exist for further collaborations between the mathematical and 
chemical sciences that could result in high-quality scholarship and research progress that would 
advance national interests.  The productivity of applied computational chemistry would likely be 
enhanced as a result, which could be potentially significant for industry. 

• Active encouragement of further collaborations is warranted because it would likely result in an 
acceleration of such research progress. 

• Cultural differences between the mathematics and the chemistry communities, involving 
language, training, aesthetics, and research style, have tended to act as barriers to collaboration, even 
in circumstances that might otherwise suggest the benefit of cooperation. 

• Institutional structures and reward systems in the academic community have often placed 
significant difficulties in the way of collaborative research across traditional disciplinary boundaries, 
which can be especially inhibiting to those in early career stages. 

• Government funding agencies have for the most part made constructive efforts to identify and 
fund worthy interdisciplinary and collaborative research.  However, this process is still somewhat 
haphazard.  Agencies tend to be organized along traditional disciplinary lines, and the evaluation of 
interdisciplinary proposals relies on personal contacts between program managers and on timely and 
comprehensive responses from what is typically a small pool of qualified reviewers.  The time lapse 
involved in the proposal evaluation process thus has often been anomalously long. 

• To a large extent, both mathematical scientists and theoretical/computational chemists are 
relatively unaware of the most exciting recent advances in each others' fields.    Consequently both 
groups tend to be insensitive to the opportunities for interdisciplinary cross-fertilization that could 
produce intellectual novelty and productivity enhancements on both sides. 

• The system of prizes and awards administered by the mathematical sciences and chemistry 
professional societies is currently not geared to recognize and reward interdisciplinary collaborative 
research advances. 

• The national environment—including Congress, funding agencies, and the professional societies 
(see, e.g., Joint Policy Board for Mathematics, 1994)—has become perceptibly more conducive to 
encouraging and supporting interdisciplinary and collaborative research, particularly as it may concern 
industrial innovation and productivity.  Government agencies in particular are currently in a mood to 
actively encourage joint industrial-academic research, even though proprietary rights barriers to free 
collaboration are recognized to exist. 

• The overwhelming volume of specialized technical literature aggravates the communication 
problems between fields and occasionally leads to wasted effort, redundancy, and rediscovery.  It 
appears that well-researched and well-written review articles spanning normally disconnected 
specialties in the mathematical sciences and in theoretical/computational chemistry represent a 
disproportionately small fraction of the technical literature, in spite of the fact that they can eliminate 
redundant effort. 
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In response to these conclusions and to the insights gained from its study, the committee makes the 
following recommendations: 

Undergraduate Education.  The best way to attract scientists to interdisciplinary work is to get them 
interested as undergraduates.  It is recommended that universities encourage undergraduate 
interdisciplinary research courses, seminars, and summer programs.  For example, mathematical 
sciences departments could institute seminars for undergraduates in which chemists (and other 
scientists) would be invited to discuss chemistry research areas that might benefit from interaction 
with mathematics.   The committee recommends that chemistry departments establish seminars for 
undergraduates in which mathematical scientists would be invited to discuss modern mathematics. 
Graduate students (and interested faculty) would of course be welcome to attend these seminars. 

In the experience of the committee members, one very successful vehicle for getting mathematics 
and chemistry undergraduates interested in research is the REU (Research Experience for 
Undergraduates) program sponsored by the National Science Foundation (NSF).  In addition to 
fostering interdisciplinary undergraduate activity at research universities, there is a real educational 
opportunity here for four-year liberal arts institutions that traditionally encourage undergraduates to 
write senior honors theses and to otherwise construct, expand, and explore their own undergraduate 
education. 

Graduate Education.  Departments in the mathematical and chemical sciences should encourage 
graduate degrees (both M.S. and Ph.D.) that involve dual (mathematics and chemistry) mentoring. 
Dual mentoring activity between chemistry and physics and chemistry and biology has been successful 
in many universities.  The committee recommends that mathematics graduate students consider a 
minor in chemistry instead of a minor in an area of mathematics related to their research specialty. 
Theoretical and computational chemistry graduate students should consider a minor in mathematics or, 
alternatively, take a core of mathematical courses appropriate to their interest (perhaps in the 
framework of a special "interdisciplinary track").  One way to encourage cross-disciplinary graduate 
education is to allow graduate students in one area to enroll in upper-level undergraduate courses in 
another area for graduate credit. 

Faculty Interaction. Mathematics and chemistry departments should on occasion invite a person 
from the other area to speak in a research seminar or a colloquium. Lists of speakers of potential 
interest to industry should be circulated to local industrial laboratories, and vice versa. 

Interdisciplinary Research.  The committee recommends that mathematics and chemistry 
departments encourage and value individual and collaborative research that is at the interface of the 
two disciplines.  Such work has the potential for significant intellectual impact on computational 
chemistry, and hence on the future evolution of chemical research and its applications to problems of 
importance in our society. 

Professional Societies.  The American Mathematical Society (AMS) issued a policy statement in 1994 
that supports interdisciplinary research.  The second goal of that statement is to "connect the power of 
mathematics and mathematical thinking to problems in science, technology, and society."  This policy 
statement is reinforced by specific recommendations to "enlarge the scope and extent of 
interdisciplinary research connecting mathematics with other fields" and to "emphasize the value of 
such connections during the mathematical training of both undergraduate and graduate students" 
(American Mathematical Society, undated). 

Professional meetings in mathematics and chemistry—for instance, those of the AMS, American 
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Chemical Society, Society for Industrial and Applied Mathematics (SIAM), and the Chemical Physics 
Division of the American Physical Society—would benefit from talks very much like the seminar and 
colloquium talks described in the recommendation for faculty interaction above, from shorter 
presentations in special sessions, and from panel discussions.  There are already some promising 
moves in this direction as reflected, for example, by recent AMS sessions on mathematics and 
molecular biology or SIAM sessions on molecular chemistry problems and optimization.  These 
sessions at national and regional professional society meetings could generate a mailing list of 
interested mathematicians and chemists, which could be the kernel of a community of people 
interested in interdisciplinary research.  Appropriate specialized interest groups such as already exist 
for other fields might be established.  One way to encourage these interests is by initiating small 
interdisciplinary workshops, perhaps incorporating tutorials for students.  Examples of successful 
interdisciplinary meetings are the mathematics and molecular biology series in Santa Fe and the 
mathematical physiology series held at the Mathematical Sciences Research Institute at the University 
of California at Berkeley.  Funding agencies have in the past funded carefully planned 
interdisciplinary meetings. 

Prizes and Awards.  The committee recommends that professional societies in the mathematical and 
chemical sciences examine the feasibility of establishing awards and named lectureships for work at 
the mathematics-chemistry interface.  High-level public recognition by peers would be a major step 
toward breaking down interdisciplinary barriers. 

Expository Articles and Books.  Professional journals in mathematics and chemistry could enhance 
their quality, appeal, and influence by publishing expository articles on work at the mathematics- 
chemistry interface.  There is a shortage of books written for someone who is mathematically 
(chemically) sophisticated and desires fairly precise but nonrigorous chemical (mathematical) 
explanations.  The committee encourages mathematicians and chemists to write expository books 
aimed at this interdisciplinary area. 

Interdisciplinary and Industrial Postdoctoral and Sabbaticals.  Mathematics and chemistry 
departments should encourage postdoctoral and faculty sabbatical study at the mathematics-chemistry 
interface.  The committee recommends that the chemical software, pharmaceutical, and chemical 
industries expand their use of mathematics postdoctorals and faculty on sabbatical leave, and increase 
their cooperation with and utilization of existing NSF programs such as the University-Industry 
Cooperative Research Program in the Mathematical Sciences; Industry-Based Graduate Research 
Assistantships and Cooperative Fellowships in the Mathematical Sciences; Mathematical Sciences 
University-Industry Postdoctoral Research Fellowships; and Mathematical Sciences University- 
Industry Senior Research Fellowships. Another opportunity in this regard exists at the Institute for 
Mathematics and Its Applications at the University of Minnesota, which has an active industrial 
postdoctoral research program with the aim of broadening the perspectives of recent doctoral 
recipients in the mathematical sciences and preparing them for research careers involving industrial 
interaction. 
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AFTERWORD 

In the course of its study the committee returned several times to the question of how to maximize 
the impact of its work and how to measure that impact.  To achieve maximum influence, leaders of 
the mathematical sciences community and researchers at the interface of the mathematical sciences and 
chemistry were invited to supply input to the committee to ensure that a broad range of experience 
and expertise was sampled.  Emphasis was put on writing a report that would appeal both to 
mathematical scientists and to theoretical/computational chemists.  A dissemination effort including 
electronic and hard-copy publication was planned to make the report widely available and to convey 
its recommendations to a variety of community leaders and policymakers. 

Because the promise of interdisciplinary work between the mathematical sciences and 
theoretical/computational chemistry is so great, the committee suggests that the cognizant boards of 
the National Research Council (NRC) invite testimony five years hence from community leaders and 
federal program managers to assess whether progress has been made in achieving this promise.  It 
would be worth attempting to gauge specifically whether the present report helped to bridge the 
stylistic and linguistic gap between the two fields addressed, especially since future NRC studies on 
interdisciplinary topics might benefit from the committee's experiences. 
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GLOSSARY 

The following entries represent words, phrases, abbreviations, and acronyms that appear in this 
report.  In many cases, definitions have been given in the text itself, but not with each occurrence. 
This collection is not offered as an exhaustive mathematics-chemistry bilingual dictionary, but rather 
as a representative guide to the kinds of technical terms often used by the respective communities and 
an aid to the reader.  It contains examples of multiple meanings that can degrade communication 
between well-intentioned, but differently trained, professionals.  Even without reading the main text, a 
perusal of this Glossary may convey a sense of the linguistic barriers that occasionally inhibit 
effective collaboration. 

Ab initio method Usually, quantum chemical computation procedures that explicitly include all 
electrons and utilize their full Hamiltonian operator; occasionally used to describe pseudopotential 
methods or other approaches with minimal semiempirical input. 

ACS American Chemical Society. 

Adiabatic Sufficiently slow variation of the externally controllable parameters of a quantum 
mechanical system so that the quantum eigenstate occupation probabilities remain unchanged over 
time. 

Adjacency matrix For an n-atom molecule, an/ixn matrix with unity as the i, y'th entry if atoms i 
and j share a covalent bond; otherwise it is zero. 

Advection Similar in spirit to "convection," but referring to forced flow under more general 
circumstances. 

Affinity Capacity for binding between two molecular units that leads to a more or less stable 
chemical combination. 

Alkaloids Nitrogen-containing organic compounds of natural origin that act as bases in solution; 
examples are nicotine, quinine, morphine, and lysergic acid. 

Alkane Saturated hydrocarbon (i.e., containing only single bonds between pairs of carbon atoms and 
carbon-hydrogen pairs).  In the strict usage this refers to molecules in which the skeleton of carbon- 
carbon single bonds has the form of a Cayley tree and so exhibits the chemical formula C„H2n+2; 
occasionally it refers to saturated hydrocarbons with cyclic skeletal closures (cycloalkanes) that have 
lower relative hydrogen content. 

Amino acid Organic acid containing an amino (nitrogen-hydrogen) group and a carboxyl group, 
usually in neighboring locations; the modular building blocks of polypeptides and proteins. 

AMS American Mathematical Society. 

Anionic site Location in a protein, gel, catalytic solid, etc., that bears an excess negative charge of 
one or more fundamental units (the electron charge). 
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APS American Physical Society. 

Assay Experimental procedure to determine the magnitude of a property of a substance.  Usually 
used in a biological or biochemical context. 

Band reduction Algorithmic process applied to matrices to result in all nonzero terms being close to 
the diagonal. 

Bar-coding Familiar supermarket technology applied to efficient automated screening of compounds 
in the pharmaceutical industry:  physical labels for packages with patterns of black and white parallel 
bars that encode text and numeric information. 

Bechgaard salts Organoselenium ionic compounds exhibiting low-temperature superconductivity. 

Biological assay An experimental procedure to test molecules for their ability to elicit a biochemical 
or pharmacological response. 

Born-Oppenheimer approximation, potential surface Approximate separation of variables in 
atomic and molecular quantum mechanics justified by the large ratio of nuclear to electron masses; 
also the potential energy surface resulting therefrom, as a function of nuclear positions. 

Breit-Pauli relativistic corrections An approximate correction for relativistic effects, used as a 
perturbation to solutions of the intrinsically nonrelativistic Schrödinger wave equation. 

Buckyball  Nickname for fullerene (see below). Usually applied to the prototypical C60 molecule. 

Catalytic antibodies Proteins central to the immune response that have been artificially endowed 
with catalytic properties. 

Catenane Chemical compound consisting of two or more ring molecules that are unconnected by 
chemical bonds but linked by topological entanglement. 

Cayley tree Linear graph (vertices linked by bonds) that is connected but contains no closed 
polygons. 

Chirality  Geometric or topological property of a molecule or other structured object distinguishing it 
from its mirror image (i.e., "handedness"). 

Clique detection Computational procedure to identify the common subgraph(s) of a pair of graphs, 
especially the maximal common subgraph. 

Cluster analysis, clustering The grouping of chemical compounds, usually on the basis of many 
distinct attributes, so that members of any one grouping resemble one another, but are clearly 
different from those of all other groupings. 

COLUMBUS  Software package for quantum chemical calculations. 

Combinatorial synthesis (combinatorial chemistry) A procedure for the simultaneous synthesis of a 
collection of related molecules, usually accomplished on a polymeric support. 

124 



Condensed phase A state of matter in which the constituent particles (atoms or molecules) are 
densely packed in space and in constant interaction with neighbors; usually refers to liquids, liquid 
crystals, glasses, crystalline solids, or quasicrystals. 

Conformation, conformation space Geometric specification of the spatial arrangement of a 
molecule, possibly flexible; the space of all possible arrangements. 

Cut-and-projection method Technique for generating quasi-crystal structures by isolating slabs from 
higher-dimensional periodic structures and projecting them into three-dimensional space. 

DARC Commercial software for managing chemical information databases. 

Daylight Chemical database software. 

Density matrix Hermitian matrix composed as the direct product of a wavefunction and its complex 
conjugate.   "Reduced density matrices" are obtained by integrating over some of the variables in the 
full density matrix. 

Distance geometry Reconstruction of the full three-dimensional shape of a protein or other 
biopolymer from a given set of intramolecular distances, which in some applications are known only 
between limits. 

DNA plasmid An autonomously replicating circular DNA molecule. 

Docking The fitting and binding of small molecules (ligands) at the active sites of biomacromolecules 
(e.g., enzymes and DNA). 

Dopamine receptor The protein on the cell surface that recognizes the neurotransmitter dopamine 
and turns on cell responses as a consequence of this recognition. 

Electrophoresis  An experimental technique to fractionate (separate) charged molecules that relies on 
differential migration velocities through an obstructive medium (gel), under the influence of an 
applied electric field. 

Enantiomer Mirror image counterpart of a chiral molecule. 

Ergodicity  Capacity of a dynamical system spontaneously to sample all of its phase space. 

Euler's gamma function Analytic extension of the factorial function from the positive integers to the 
complex plane. 

EVB  An approach to an approximate solution of the electronic Schrödinger equation, using an 
empirical valence bond wavefunction. 

FCC crystal Face-centered cubic crystal, one of the close-packed arrangements of rigid spheres in 
three-dimensional space. 

Fermi resonance Coupling between normal modes of vibration due to anharmonic potential energy 
contributions, when a resonance condition is satisfied (rational ratio of normal mode frequencies). 
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Fermion Particle with half-integer spin, and therefore exhibiting wavefunction antisymmetry and 
Fermi statistics. 

FFT Fast Fourier transform. 

Fluxional molecule Flexible molecule, capable of substantially changing its conformation (shape) 
under the prevailing temperature and surrounding-medium conditions. 

Fullerene Stable molecule consisting entirely of carbon atoms arranged at the vertices of a convex 
polyhedron. 

GAMESS  Software package for quantum chemical calculations. 

GAUSSIAN Software package for quantum chemical calculations that emphasizes use of Gaussian 
basis functions. 

Hamiltonian In classical mechanics, the sum of kinetic and potential energy functions (i.e., the total 
energy); in quantum mechanics, the corresponding linear Hermitian operator. 

Harmonic analysis A mathematical theory that aims to decompose complex phenomena into the 
superposition of simpler phenomena (such as wave forms). 

Hartree-Fock approximation Replacement of an exact wavefunction with an antisymmetrized 
product of single-particle orbitals (i.e., a Slater determinant). 

Hermitian operator Linear operator whose matrix elements exhibit the property that reflection 
across the diagonal is equivalent to complex conjugation. 

Hessian matrix Symmetric matrix of second partial derivatives, often used in optimization routines 
for many types of objective functions.  A frequently encountered application involves searching for 
extremes on potential energy surfaces. 

Heteropolymer A polymer formed from nonequivalent monomer units. 

High-performance computers A phrase adopted to refer to emerging computers of a variety of 
designs (parallel, vector, and others) that reflects the convergence of many of these design concepts. 

Homotopic paths Paths that share the same end points and can be continuously deformed into one 
another while those end points are kept fixed. 

HONDO  Software package for quantum chemical calculations. 

Hiickel theory An approximate theory of molecular electronic structure that uses a minimal basis of 
atomic orbitals, and simplified Coulomb and exchange integrals. 

Human genome (project) The 3 x 109 base pairs that constitute the entire human genetic heritage; 
the Human Genome Project aims for a complete mapping of the human genome, identifying and 
sequencing regions of chromosomes that code for individual proteins. 
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Hydrogen bond Weak noncovalent interaction (mainly electrostatic) bond between a significantly 
positive hydrogen atom and an electronegative atom (usually nitrogen, oxygen, or fluorine); 
consequently, an important structural element in water, proteins, and other biopolymers, as well as in 
the recognition (specific binding) of small molecules by biopolymers. 

Interval analysis A mathematical technique that involves computation of strict bounds to bracket the 
global minimum of a function. 

Irreducible representation Group representation (e.g., as matrices) that does not admit of 
decomposition into a direct product of elements of lower dimension. 

JPBM Joint Policy Board for Mathematics. 

Koopmans's "theorem" Asserts that orbital eigenvalues of the Hartree-Fock approximation provide 
good estimates of the vertical (fixed nucleus) ionization energies of atoms or molecules. 

Langevin equation, dynamics An approach for analysis and simulation of molecular motion in 
which the molecular forces in Newton's classical equations are modified by additional terms (a 
frictional kernel and stochastic forces) that attempt to describe in a simple and computationally 
feasible way the effects of surroundings (e.g., solvent medium) on motion of the molecule of interest. 

Lie group A differentiable manifold that has a group structure on its elements, with the property that 
the group operations (multiplication and inversion) are continuous.  A standard and useful example is 
the set of nonsingular real n x n matrices.  Other examples are the group of rigid motions in 
Euclidean space and the group of equivalence classes of transformations that agree on some 
neighborhood of the identity.  The last was the original object of study by Sophus Lie around 1890. 

Ligand A molecule or other chemical grouping attached to a larger molecular structure.  In the case 
of a small molecule that binds to a biomacromolecule, the latter is frequently referred to as the 
"receptor." 

MAA Mathematical Association of America. 

MDI Commercial software for chemical information databases (Molecular Design Incorporated, San 
Leandro, California). 

MELD  Software package for quantum chemical calculations. 

Molecular dynamics (MD) Computer simulation technique for many-body systems that relies on 
numerical solution of classical equations of motion for atoms or molecules and evaluates 
thermodynamic, kinetic, and structural properties as time averages. 

Molecular mechanics The field encompassing molecular statics, or the construction of appropriate 
force fields for representing molecular systems and the associated potential energy minimizations. 

Molecular modeling The art of representing and analyzing molecular systems by using mathematical 
concepts and techniques, numerical computation, graphics, etc. 

Monte Carlo methods Numerical evaluation procedures relying on probability and the repeated use 
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of random number generators. 

NMR Nuclear magnetic resonance. 

Nodal cells Connected regions of the configuration space for a set of electrons, over which their 
wavefunction maintains constancy of sign. 

NOE  Nuclear Overhauser effect. 

Normal modes Independent harmonic motions of a mechanical system that possesses a quadratic 
potential energy function; alternatively, such motions of small amplitude on a more complicated 
surface that can be locally approximated as quadratic. 

iV-representability Attribute of candidates for reduced density matrices (in quantum mechanics) or 
for molecular distribution functions (in classical statistical mechanics) that they correspond to the 
contraction of some legitimate TV-body wavefunction or distribution function. 

NSF National Science Foundation. 

Nucleotide Hydrolysis product (monomeric unit) of nucleic acids. 

n-valent vertices Vertex of a linear graph at which n bonds (edges) are attached. 

Pade approximant Rational function approximation to an analytic function, usually determined by 
matching power series coefficients. 

Parallel computer A computer with multiple processors working in parallel on portions of one 
computation. 

Path integral An appropriately weighted sum over a family of line integrals connecting fixed end 
points.  Applications include descriptions of Brownian motion and quantum transition probabilities. 

Pauli exclusion principle The requirement for electrons (or other fermions) that the wavefunction 
for a collection of such particles is antisymmetric under interchange of the position and spin 
coordinates of any pair of identical particles.  In the case of noninteracting or uncorrelated particles, 
it leads to the requirement that at most, one particle can be in each single-particle state. 

Pharmacophore The chemical identity and geometrical arrangement of key substituents in a 
molecule that confer biochemical or pharmacological effects. 

Phase In quantum mechanics, the phase angle of a complex wavefunction or order parameter; in 
statistical mechanics, the state of aggregation of matter (e.g., crystal, liquid, vapor, quasicrystal, 
liquid crystal); in dynamics, the position-momentum specification. 

Phase space The joint space of configurational coordinates and their conjugate momenta for a 
classical dynamical system. 

Pisot numbers Root of a polynomial with integer coefficients, all of whose other roots have absolute 
values less than unity. 
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Polyacetylene Linear polymer bearing delocalized electrons, formed from acetylene (C2H2). 

Polyvinylcarbazole Photoconductive polymer that has been used as an active material in xerographic 
applications. 

Potential energy surface Surface (hypersurface) in (3N + l)-dimensional space expressing the 
potential energy of interaction within an N-particle system, as a function of the 3iV position 
coordinates; see Born-Oppenheimer approximation. 

Prokaryote A single-cell organism that has no distinct nucleus. 

Protein folding Spontaneous development, under ambient conditions, of the natural 
three-dimensional shape of a protein molecule that facilitates its biological function. 

Pseudorandom number generator Numerical algorithm to approximate an ideal generator of 
statistically independent, uniformly distributed, random numbers. 

QSAR Quantitative structure-activity relationship.  A statistical method that relates biological potency 
to physical properties of molecules. 

Quantum chaos Dynamical evolution of a quantum mechanical system that displays irregular 
motions and extreme sensitivity to initial conditions. 

Quasicrystals  Solids exhibiting long-range orientational coherence of local atomic coordination 
geometry but no crystallographic periodicity or unit cell. 

Quasi-ergodic Property of a dynamical system that it eventually visits a well-defined neighborhood 
of any kinematically accessible point in its phase space. 

Racemates Mixtures containing equal amounts of enantiomeric (mirror-image stereoisomer) 
molecules. 

Raman spectroscopy Technique of molecular spectroscopy enabled by the coupling of vibrations to 
electronic polarizability. 

Random number generator A random number generator is a computer procedure that scrambles the 
bits of a current number or set of numbers in such a way that the result appears to be randomly 
distributed among the set of possible numbers and to be independent of the previously generated 
numbers.  The lagged-Fibonacci random number generator, for instance, uses a shift operation and a 
binary operation on «-tuples from a finite set (usually the integers mod m). 

Reaction coordinate Configurational coordinate measuring distance across a transition state saddle 
point on the potential surface of a chemically reactive system. 

Residue A chemical unit, such as an amino acid, of a large molecule. 

REU The Research Experience for Undergraduates program of the National Science Foundation. 

Ribosome Cellular structure that is the usual site of protein synthesis in living organisms. 
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Riemann zeta function Sum of the inverse 5th powers of the positive integers, viewed as an analytic 
function of s. 

Salem numbers Root of a polynomial with integer coefficients, all of whose other roots have 
absolute values equal to or less than unity. 

Scalable parallel algorithms or parallel computers Those that can continue to perform efficiently 
as both the problem size and the number of processors increase. 

Schur's lemma Relation between irreducible representations of a finite group. 

Semiclassical approximation Treatment of dynamics in which quantum effects are regarded as a 
weak perturbation on classical mechanics; often implemented formally as the limit at which Planck's 
constant approaches zero. 

Sequence space The set of possible ordered monomer sequences for a biopolymer.   For proteins this 
is the "primary structure," the amino acid sequence along the molecular backbone; for DNA it is the 
sequence gene-encoding bases (adenine, cytosine, guanine, thymine). 

Sequential computers (uniprocessors) Computers that operate on individual pieces of data in 
sequence.  Contrast with vector processing and parallel computers. 

SIAM Society for Industrial and Applied Mathematics. 

Slater determinant Determinant whose elements are n distinct orbitals for n distinct electrons. 

Solitons Stable pulse or particle-like solutions of some nonlinear wave equations. 

Spin glass A large collection of spins whose interactions frustrate simple ordering and thus create 
many deep potential energy minima that are nearly degenerate. 

Statistical mechanics The study of the collective behavior of large numbers of interacting particles. 
Properties of interest include those describing time-dependent, irreversible process.  The basic 
principles of this discipline were laid down in the nineteenth century by Ludwig Boltzmann, James 
Clerk Maxwell, and Josiah Willard Gibbs. 

Stereoisomers Molecules that differ only by mirror inversion of bonds at chiral centers (usually 
carbon atoms). 

Stochastic dynamics A framework for expressing the dynamics of a molecular system that includes 
stochastic elements (e.g., random forces that mimic effects of the environment); see Molecular 
dynamics and Langevin equation. 

Supercoiling The interwinding of double helical DNA upon itself; also called supertwisting. 

Symplectic integrator Class of numerical algorithms for integrating classical many-body equations of 
motion, that exactly preserve phase space volume and other classical invariants of motion. 

Terpenes  Unsaturated (double-bond-containing) hydrocarbons with composition C10H,6; typically 
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